SOLUBILITY PRODUCT

Solubility	 ionic compounds tend to be insoluble in non-polar solvents ionic compounds tend to be soluble in water water is a polar solvent and stabilises the separated ions some ionic compounds are very insoluble even soluble ionic compounds have a limit as to how much solute dissolves 								
Saturated solutions	 a solution becomes saturated when solute no longer dissolves in the solvent solubility varies with temperature most solutes are more soluble at higher temperatures 								
Solubility product	Even the most insoluble ionic compounds dissolve to a small extent. An equilibrium is set up between the undissolved solid and its aqueous ions;								
	eg	(i)	MX(s)	<u> </u>	M⁺ (aq)	+	X ⁻ (aq)		
	-	(ii)	BaSO ₄ (s)		Ba²⁺ (aq)	+	SO ₄ ²⁻ ((aq)	
		(iii)	PbC <i>l</i> ₂ (s)	$\overline{}$	Pb²⁺ (aq)	+	2C <i>Г</i> (a	q)	
Theory	Applying the equilibrium law to (i) and assuming the concentration of MX(s) is constant in a saturated solution. [] is the concentration in mol dm ⁻³						[M⁺(aq The co SOLUI	()] $[X^{-}(aq)] = a constant constant is known as the BILITY PRODUCT Ksp$	
	BaSO ₄ PbCl ₂ (s) < (s) <= s) <=	→ Ag (a → Ba ²⁺ (→ Pb ²⁺ ((aq) + (aq) +	SO 4 ²⁻ (aq) 2CΓ(aq)		K _{sp} = K _{sp} = K _{sp} =	$[Ba^{2+}(aq)] [Cl^{-}(aq)]$ $[Ba^{2+}(aq)] [SO_4^{2-}(aq)]$ $[Pb^{2+}(aq)] [Cl^{-}(aq)]^2$	
Units The value of K _{sp} has units and is varies with temperature							ure		
	$K_{sp} = [Ag^+(aq)] [C\Gamma(aq)]$ units of					mol ^z	mol² dm ⁻⁶		
	K_{sp} =	[Pb ²⁺	(aq)] [C <i>l</i> ⁻ (ad	a)] ²	units of	mol	³ dm ⁻⁹		
Q.1 Write expressions for K_{sp} for the following compounds; state the units of K_{sp}									
	AgBr								
	CaSC	$\mathbf{D}_{\mathcal{A}}$							
	Fe(O	$(H)_{2}$							
	10,01	- 12							
	Fe(O	<i>H</i>) ₃							

1

Calculating

2

solubility Solubility products can be used to calculate the solubility of ionic compounds.

CIE

Example 1 At 25°C the solubility product of lead(II) sulphide, PbS is 4×10^{-28} mol² dm⁻⁶. Calculate the solubility of lead(II) sulphide.

The equation for its solubility is PbS	(s) = Pb ²⁺ (aq) + S ²⁻ (aq)
The expression for the solubility product is	$K_{sp} = [Pb^{2+}(aq)] [S^{2-}(aq)]$
According to the equation you get one Pb ²⁺ (aq) for every one S ²⁻ (aq); the concentrations will be equal	[Pb ²⁺ (aq)] = [S ²⁻ (aq)]
Substituting and rewriting the expression for $\ensuremath{K_{sp}}$	$K_{sp} = [Pb^{2+}(aq)]^2$
Re-arranging $[Pb^{2+}(aq)] = \sqrt{K_{sp}} = \sqrt{4 x}$	10^{-28} = 2 x 10^{-14} mol dm ⁻³
As you get one Pb ²⁺ from one PbS, the solubility o	of PbS = 2 x 10 ⁻¹⁴ mol dm ⁻³
M_r for PbS is 239; the solubility is 239 x 2 x 10 ⁻¹⁴	$g dm^{-3} = 4.78 \times 10^{-12} g dm^{-3}$

Example 2 The solubility of ionic compound MY at 25° C is 5×10^{-10} g dm⁻³. The relative mass of MY is 200. Calculate the solubility product of the salt MY at 25° C.

[mass = moles x molar mass]

Solubility of MY $= 2.5 \times 10^{-12} \text{ mol dm}^{-3}$ solubility in g 5 x 10⁻¹⁰ molar mass 200 The equation for its solubility is **── M⁺(aq) + Y⁻(aq)** The expression for the solubility product is $K_{sp} = [M^{+}(aq)] [Y^{-}(aq)]$ According to the equation; moles of $M^+(aq) = moles of Y^-(aq)$ = moles of MY(s) which have dissolved Substituting values $K_{sp} = [2.5 \times 10^{-12}] [2.5 \times 10^{-12}]$ $= 6.25 \times 10^{-24} \text{ mol}^2 \text{ dm}^{-6}$ The value of the solubility product K_{sp}

Q.2 a) Calculate the solubility of $PbSO_4$ in mol dm^{-3} ($K_{sp} = 1.6 \times 10^{-8} \mod^2 dm^{-6}$).

b) The solubility of Ag_2CO_3 is 1.2 x 10⁻⁴mol dm⁻³; calculate the K_{sp} value.

THE COMMON ION EFFECT

- *Introduction* Adding a common ion, (**one which is present in the solution**), will result in the precipitation of a sparingly soluble ionic compound.
 - *eg* Adding a solution of sodium chloride to a saturated solution of silver chloride will result in the precipitation of silver chloride.
- TheorySilver chloride dissociates in water as follows $AgCl(s) \iff Ag^{+}(aq) + C\Gamma(aq)$ The expression for the solubility product is
which, at 25°C, is $K_{sp} = [Ag^{+}(aq)] [C\Gamma(aq)]$
 $= 1.2 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$

If this value is exceeded, precipitation will occur.

The value can be exceeded by adding **EITHER** of the two soluble ions.

If sodium chloride solution is added, the concentration of $C\Gamma(aq)$ will increase and precipitation will occur.

Likewise, addition of silver nitrate solution $AgNO_3(aq)$ will produce the same effect as it would increase the concentration of $Ag^+(aq)$.

- Example If equal volumes of the following solutions are mixed, will AgCl be precipitated? AgNO₃ (2 x 10⁻⁵ mol dm⁻³) and NaCl (2 x 10⁻⁵ mol dm⁻³). $K_{sp} = 1.2 \times 10^{-10} \text{ moP} \text{ dm}^{-6}$
 - in AgNO₃ the concentration of Ag⁺ is 2 x 10⁻⁵ mol dm⁻³ in NaCl the concentration of Cl⁻ is 2 x 10⁻⁵ mol dm⁻³
 - when equal volumes are mixed, the concentrations are halved $[Ag^+] = 1 \times 10^{-5} \text{ mol dm}^{-3}$ $[CI^-] = 1 \times 10^{-5} \text{ mol dm}^{-3}$
 - $[Ag^+][CI^-] = [1 \times 10^{-5} \text{ mol dm}^{-3}] \times [1 \times 10^{-5} \text{ mol dm}^{-3}] = 1 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$
 - because this is lower than the K_{sp} for AgCl... NO PRECIPITATION OCCURS

Q.3 Which ion(s) would you add to form a precipitate in the following saturated solutions? a) AgI b) BaSO₄ c) PbS

Q.4 Describe what would happen (and explain why it happens) when...

a) Dilute hydrochloric acid is added to a saturated solution of silver(I) chloride.

b) Sodium sulphate is added to a saturated solution of barium sulphate.

3