

MOLE CALCULATIONS

- the mole is the standard unit of amount ... its value is 6.022×10^{23}
- molar mass = the mass of one mole ... it is usually measured in grams per mol... g mol⁻¹
- to calculate the number of moles ... use one of the following relationships

SINGLE SUBSTANCE MOLES	=	MASS / MOLAR MASS
mass	=	moles x molar mass
molar mass	=	mass / moles
SOLUTION moles	=	concentration x volume
concentration	=	moles / volume
volume	=	moles / concentration
BUT if volume is in cm ³ MOLES	=	CONCENTRATION x VOLUME (in cm ³) 1000

EQUATIONS

• give you the ratio in which chemicals react and are formed

• need to be balanced in order to do a calculation

WORKED EXAMPLE

 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 + H_2O$

1. What is the relative molecular mass of $CaCO_3$? ANS $40 + 12 + (3 \times 16) = 100$ 2. What is the mass of 1 mole of $CaCO_3$? ANS 100 g What does 0.1M HCl mean ? 3. the concentration is 0.1 mol dm⁻³ ANS How many moles of HCl are in 20cm³ of 0.1M HCl? = 0.002 moles 4. ANS 0.1 x 20 1000 5. ANS $\frac{1}{2} \times 0.002 = 0.001$ moles How many moles of $CaCO_3$ will react? 6. What is the mass of 0.001 moles of $CaCO_3$? ANS $mass = moles \ x \ molar \ mass$ $= 0.001 \times 100 = 0.1 g$ 7. What mass of CO_2 is produced ? ANS moles of CO_2 = moles of $CaCO_3$ moles of $CO_2 = 0.001$ moles mass of $CO_2 = 0.001 \times 44 = 0.044g$

QUESTION

- a) Balance the equation :- NaOH + H_2SO_4 -----> Na₂SO₄ + H_2O
- b) How many moles in 30 cm^3 of $0.100 \text{M H}_2 \text{SO}_4$?
- c) How many moles of NaOH will react with 30 cm³ of $0.100M H_2SO_4$?
- d) What volume of 0.08M NaOH will react with 30 cm³ of $0.100M H_2SO_4$?