Cam

## **GROUP IV**

#### General

- occurs in the middle of the periodic table
- contains metals and non-metals
- metallic properties increase down group
- stability of +4 oxidation state decreases down group the 'inert pair' effect
- all have the electronic configuration  $\dots n s^2 n p^2$ .

#### ELEMENTS

|                            | С                                    | Si                                   | Ge                                    | Sn                                   | Pb                                   |
|----------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| atomic number              | 6                                    | 14                                   | 32                                    |                                      |                                      |
| electron config.           | [He] 2s <sup>2</sup> 2p <sup>2</sup> | [Ne] 3s <sup>2</sup> 3p <sup>2</sup> | [Ar] 4s <sup>2 4</sup> p <sup>2</sup> | [Kr] 5s <sup>2</sup> 5p <sup>2</sup> | [Xe] 6s <sup>2</sup> 6p <sup>2</sup> |
| atomic radius / nm         | 0.077                                | 0.177                                | 0.122                                 | 0.140                                | 0.154                                |
| electronegativity          | 2.5                                  | 1.8                                  | 1.8                                   | 1.8                                  | 1.8                                  |
| 1st I.E. / kj mol-1        | 1086                                 | 786                                  | 760                                   | 710                                  | 720                                  |
| description                | non-metal                            | metalloid                            | metalloid                             | metal                                | metal                                |
| bonding                    | gaint covalent                       | giant covalent                       | giant covalent                        | metallic                             | metallic                             |
| melting point / °C         | 3550 (diam)                          | 1410                                 | 940                                   | 232                                  | 328                                  |
| boiling point / °C         | 4830 (diam)                          | 2680                                 | 2830                                  | 2690                                 | 1751                                 |
| electrical<br>conductivity | graphite - good<br>diamond - poor    | semiconductor s                      | semiconductor                         | good                                 | good                                 |

### TRENDS

| Melting Point | General decrease<br>down group | С    | Si   | Ge  | Sn  | Pb  |
|---------------|--------------------------------|------|------|-----|-----|-----|
|               | Melting point / °C             | 3550 | 1410 | 940 | 232 | 328 |

- · change from giant molecular to metallic bonding
- many bonds need to be broken to separate the atoms in giant molecules
- the larger the atoms the weaker the covalent bond

| Electrical<br>conductivity | <b>C</b> diamond graphite | poor<br>good  | no free electrons - all used for bonding<br>one electron per carbon is not used for bonding<br>and joins delocalised cloud |
|----------------------------|---------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
|                            | Si                        | semiconductor |                                                                                                                            |
|                            | Ge                        | semiconductor |                                                                                                                            |
|                            | Sn                        | good          | metallic bonding - delocalised electron cloud                                                                              |
|                            | Pb                        | good          | metallic bonding - delocalised electron cloud                                                                              |

1

Cam

- Group IV

### TETRACHLORIDES

|                     | CCI4        | SiCl <sub>4</sub> | GeCl <sub>4</sub> | SnCl₄       | PbCl₄          |
|---------------------|-------------|-------------------|-------------------|-------------|----------------|
| boiling point / °C  | 77          | 58                | 87                | 114         | 105 (explodes) |
| bonding             | covalent    | covalent          | covalent          | covalent    | covalent       |
| structure           | molecular   | molecular         | molecular         | molecular   | molecular      |
| shape               | tetrahedral | tetrahedral       | tetrahedral       | tetrahedral | tetrahedral    |
| reaction with water | none        | hydrolysed        | hydrolysed        | hydrolysed  | hydrolysed     |

| Bonding    | <ul> <li>Covalency is favoured if the cation is</li> <li>all should be covalent</li> <li>CCl<sub>4</sub> should be the most covalent</li> <li>all will be tetrahedral</li> </ul> | <ul> <li>small and has a high charge therefore</li> <li>in +4 oxidation state</li> <li>small size of carbon</li> <li>repulsion between 4 bond pairs of electrons</li> </ul> |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrolysis | <ul> <li>CCl<sub>4</sub> isn't hydrolysed by water</li> <li>remainder are rapidly hydrolysed</li> </ul>                                                                          | <ul> <li>no available space to accept a lone pair</li> <li>not limited to a co-ordination number of 4</li> <li>give an acidic solution due to HCI</li> </ul>                |
|            | e.g. SiCl <sub>4(1)</sub> + 2H <sub>2</sub> O <sub>(1)</sub> ->                                                                                                                  | SiO <sub>2(s)</sub> + 4HCl <sub>(aq)</sub>                                                                                                                                  |

### DIOXIDES

|                      | CO <sub>2</sub>       | SiO <sub>2</sub>           | GeO <sub>2</sub> | SnO <sub>2</sub>                 | PbO <sub>2</sub> |
|----------------------|-----------------------|----------------------------|------------------|----------------------------------|------------------|
| melting point / °C   | -56                   | 1610                       | 1116             | 1127                             | decomp 300       |
| thermal stability    | <                     | stable to high ter         | nperatures —     | —>                               | decomposes       |
| bonding<br>structure | covalent<br>molecular | covalent<br>giant molecule | e < ir           | creasingly ionic giant structure | ><br>>           |
| nature               | acidic                | acidic                     | amphoteric       | amphoteric                       | amphoteric       |
| solubility in water  | slightly              | insoluble                  | insoluble        | insoluble                        | insoluble        |

- Stability
- All except PbO<sub>2</sub> are thermally stable
  - The +4 oxidation state gets less stable down the group

Bonding

- ionic character increases down the group as atomic size increases
  - $CO_2$  is a simple molecule, the rest have giant structures

2 -

| Group IV —             |                                   | Cam                                                                                                                                                                                                                                               |
|------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acid-base<br>character | CO2                               | <ul> <li>acidic (non-metal oxide)</li> <li>dissolves in water to give a weak acidic solution</li> <li>CO<sub>2(aq)</sub> + H<sub>2</sub>O (I) = H<sup>+</sup> (aq) + HCO<sub>3</sub><sup>-</sup> (aq)</li> </ul>                                  |
|                        | SiO <sub>2</sub>                  | <ul> <li>acidic (non-metal oxide)</li> <li>insoluble in water</li> <li>dissolves in conc alkali<br/>SiO<sub>2(s)</sub> + 2OH<sup>-</sup><sub>(aq)</sub>&gt; SiO<sub>3</sub><sup>2-</sup><sub>(aq)</sub> + H<sub>2</sub>O<sub>(l)</sub></li> </ul> |
|                        | GeO <sub>2</sub>                  | • amphoteric<br>• dissolves in acid<br>$GeO_{2(s)} + 4HCI_{(aq)} \longrightarrow GeCI_{4(aq)} + 2H_2O_{(l)}$<br>• dissolves in alkali<br>$GeO_{2(s)} + 2OH^{-}_{(aq)} + 2H_2O_{(l)} \longmapsto [Ge(OH)_6]^{2^{-}}_{(aq)}$                        |
| SnO                    | 9 <sub>2</sub> , PbO <sub>2</sub> | • amphoteric                                                                                                                                                                                                                                      |

- 3

- similar reactions to germanium
- acidic character decreases down the group

## MONOXIDES

| Stability              | <ul><li>The +2 oxidation</li><li>CO is a powerful</li></ul>   | state gets more stable down the group reducing agent                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bonding                | <ul><li>ionic character in</li><li>CO is a simple m</li></ul> | creases down the group as atomic size increases<br>olecule                                                                                                                                                                                                                                                                        |
| Acid-base<br>character | со                                                            | <ul><li>neutral</li><li>insoluble in water</li></ul>                                                                                                                                                                                                                                                                              |
|                        | GeO, SnO, PbO                                                 | <ul> <li>amphoteric</li> <li>dissolves in acid<br/>PbO<sub>(s)</sub> + 2HCl<sub>(aq)</sub>&gt; PbCl<sub>2 (aq)</sub> + H<sub>2</sub>O<sub>(l)</sub></li> <li>dissolves in alkali<br/>PbO<sub>(s)</sub> + 2OH<sup>-</sup><sub>(aq)</sub>&gt; PbO<sub>2</sub><sup>2-</sup><sub>(aq)</sub> + H<sub>2</sub>O<sub>(l)</sub></li> </ul> |



# SILICON(IV) OXIDE - SiO<sub>2</sub>

*Properties* Silica based ceramics are

- good electrical insulators
- good thermal insulators
- have great rigidity
- are hard
- Uses furnace linings
  - glasses for solar panels
  - power line insulators
  - · parts of turbines

**Q.1** Why is graphite a better conductor of electricity than diamond or silica?

0.2 What is the shape of the complex ion  $[Ge(OH)_6]^{2-}$ ?