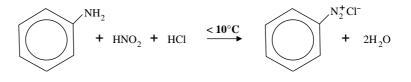
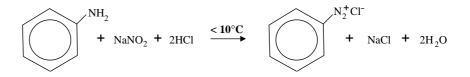
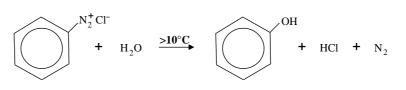

BENZENE DIAZONIUM CHLORIDE


Structure

- has the formula C₆H₅N₂⁺ Cl[−]
 - a diazonium group is attached to the benzene ring
 - the aromatic ring helps stabilise the ion


Preparation From phenylamine (*which can be made by reduction of nitrobenzene*)

reagentsnitrous acid and hydrochloric acidconditionskeep below 10° Cequation $C_6H_5NH_2$ + HNO2 + HCI ----> $C_6H_5N_2^+$ Cl⁻ + 2H2O

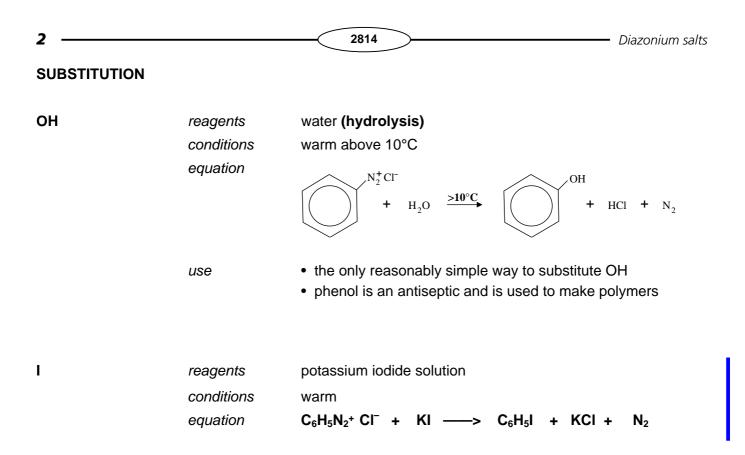

notes nitrous acid is unstable and is made in situ from sodium nitrite

 $C_6H_5NH_2$ + NaNO₂ + 2HCI \longrightarrow $C_6H_5N_2^+$ Cl⁻ + NaCl + 2H₂O

the solution is kept cold to slow down decomposition of the diazonium salt

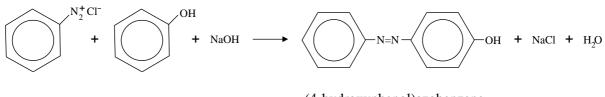
 $C_6H_5N_2^+$ Cl^- + H_2O ----> C_6H_5OH + HCI + N_2

Reactions Benzene diazonium chloride undergoes two main types of reaction


SUBSTITUTION OF THE DIAZONIUM GROUP
nitroge

nitrogen expelled

• COUPLING REACTIONS


the nitrogen atoms are retained

1

COUPLING

Phenols	reagents	phenol and sodium hydroxide
	conditions	alkaline solution below 10°C
	equation	
	C₀H₅N₂⁺ Cl⁻ +	$-C_6H_5OH + NaOH \longrightarrow C_6H_5-N=N-C_6H_4OH + NaCI + H_2O$

(4-hydroxyphenol)azobenzene YELLOW

use

making azo dyes

the -N=N- is the AZO functional group

Q.1 Outline a scheme, listing reagents and conditions, for the synthesis of 1,3-diiodobenzene. (n.b. iodine directs to the 2,4,and 6 positions)