PERIOD 3 ELEMENTS AND THEIR COMPOUNDS

Introduction

- the first two periods in the periodic table are not typical
 - the first contains only two elements (H, He)
 - the second (Li Ne) contains the top elements of each group; these have small sizes and relatively high ionisation energies so are atypical
 - Period 3 is best for studying periodic trends.

ELEMENTS

Structure As you move from left to right the elements go from highly electropositive metals through metalloids with giant structures to the simple molecular structure of non-metals.

Na	Mg	AI	Si	P ₄	S ₈	Cl ₂	Ar
<	metals	- >	metalloid	< - non me	etals (simple	molecules) - >

Reactions with ...

Water As you move from left to right across a period the metals become less reactive

Sodi	Sodium			vigorous reaction with cold water; strong alkaline solution formed				
		2Na _(s)	+	2H ₂ O _(g)		->	2NaOH_(aq) + very soluble	H _{2(g)}
Mag	nesium	very sl	ow	reaction	with cold	l w	vater	
		Mg _(s)	+	2H ₂ O _(g)	;		Mg(OH) _{2(s)} + sparingly soluble	H _{2(g)}
		vigorou	us r	eaction w	ith stear	m		
		Mg _(s)	+	H ₂ O _(g)	>		MgO _(s) + H _{2(g)}	

Oxygen	 elements must be heated to react; however dry phosphorus can ignite spontaneously which is why it is stored under water the reactivity depends a lot on the state of subdivision 				
	Sodium	vigorous reaction with ignited sodium ionic sodium oxide formed			
		$4Na_{(s)} + 2O_{2(g)} \longrightarrow 2Na_2O_{(s)}$			
	Magnesium	vigorous reaction with ignited magnesium ionic magnesium chloride formed			

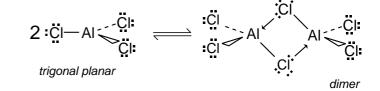
 $2Mg_{(s)} + O_{2(g)} \longrightarrow 2MgO_{(s)}$

Period 3	3
----------	---

Aluminium	sheets of aluminium get slowly coated with thin oxide layer powdered aluminium shows a vigorous reaction with sparks ionic aluminium oxide formed
	$4AI_{(s)} + 3O_{2(g)} \longrightarrow 2AI_2O_{3(s)}$
Silicon	vigorous reaction with silicon powder covalent giant molecular silicon dioxide formed
	Si _(s) + O _{2(g)} > SiO _{2(s)}
Phosphorus	ignites spontaneously in oxygen - white solid produced
	$P_{4(s)} + 5O_{2(g)} \longrightarrow P_4O_{10(s)}$
Sulphur	burns with a lilac flame to give a choking gas which fumes in moist air covalent molecules of sulphur dioxide formed
	S _(s) + O _{2(g)} > SO _{2(g)}

Α5

Chlorine Most can be prepared by direct combination by passing the gas over the heated element If two chlorides are possible, the higher oxidation state one is formed - get PCI₅ not PCI₃


e.g.	Sodium	2Na _(s) + Cl _{2(g)} >	2NaCl _(s)
	Magnesium	Mg _(s) + Cl _{2(g)} >	MgCl _{2(s)}
	Aluminium	2AI _(s) + 3CI _{2(g)} >	2AICI _{3(s)}
	Silicon	Si _(s) + 2Cl _{2(g)} >	SiCl _{4(I)}
	Phosphorus	2P _(s) + 5Cl _{2(g)} >	2PCI _{5(s)}

Structures

sodium chloride magnesium chloride giant ionic lattice giant ionic lattice

aluminium chloride

covalent molecule which can exist as a **dimer** Lewis acid - 6 electrons in outer shell of aluminium

silicon(IV) chloride phosphorus(V) chloride covalent molecule

tetrahedral

covalent molecule

trigonal bipyramidal

PERIODICITY IN COMPOUNDS

Chlorides - Summary

	NaCl	MgCl₂	AICI ₃	SiCl₄	PCI₅	SCI ₂	Cl_2
melting point / K bonding structure solubility in water pH of solution	1074 ionic lattice very 7	987 ionic lattice very 7	450 <i>(sub)</i> covalent molecular hydrolysed 5	203 covalent molecular hydrolysed 0	435 <i>(sub)</i> covalent molecular hydrolysed 0	195 covalent molecular	172 covalent molecular

NaCl, MgCl₂ Typical **ionic solids** existing as giant ionic lattices with high melting points Both dissolve in water to give **neutral solutions** containing separate aqueous ions

SodiumNaCl(s)Na+(aq) $CI^-(aq)$ MagnesiumMgCl2(s)Mg2+(aq)4 2CI⁻(aq)

AlCl₃ High charge density of Al³⁺ favours covalency It is readily hydrolysed giving an **acidic solution**.

 $AICI_{3(s)} + 6H_2O_{(l)} \longrightarrow [AI(H_2O)_6]^{3+}(aq) + 3CI^{-}(aq)$

SiCl₄ Availability of 3d orbitals means that it is easily hydrolysed producing an **acidic solution**.

 $SiCl_{4(I)}$ + $4H_2O_{(I)}$ -----> $SiO_2.2H_2O_{(s)}$ + $4HCl_{(aq)}$

PCl₅ Unusual for a non-metallic chloride, it exists as $[PCl_4^+][PCl_6^-]$ Hydrolysed giving **acidic solution**.

 $PCI_{5(s)} + 4H_2O_{(l)} \longrightarrow H_3PO_{4(aq)} + 5HCI_{(aq)}$

Across the period...

• bonding changes from ionic to covalent (more likely to be hydrolysed)

• react with water rather than dissolve in it

• change from giving neutral solutions to acidic solutions

A5

Oxides - Summary

	Na₂O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO2	SO ₃
melting point / K	1548	3125	2345	1833	573 <i>(subl)</i>	200	290
bonding	ionic	ionic	ionic/cov	covalent	covalent	covalent	covalent
structure	lattice	lattice	lattice	macromol.	molecular	molecular	molecular
classification	alkaline	alkaline	amphoteric	acidic	acidic	acidic	acidic
solubility in water	very	sparingly	insoluble	insoluble	reacts	reacts	reacts
pH of solution	14	9	7	7	0	3	0

 metals produce basic, non-metals produce acidic oxides Preparation • aluminium oxide is an **amphoteric** oxide (it shows acidic and basic properties) · ionic oxides have high melting points and conduct electricity when molten most oxides can be prepared by direct combination (EXC. SO₃) $2Mg_{(s)} + O_{2(g)} \longrightarrow 2MgO_{(s)}$ $S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}$ Na₂O **Basic**, hydrolysed by water to form a strongly alkaline solution. $Na_2O_{(s)} + H_2O_{(l)} \longrightarrow 2NaOH_{(ac)}$ Very low solubility due to metal's greater charge density MgO Basic, reacts with acids to form salts. e.g. $MgO_{(s)} + 2HCI_{(aq)} \longrightarrow MgCI_{2(aq)} + H_2O_{(l)}$ $MgO_{(s)} + H_2SO_{4(aq)} \longrightarrow MgSO_{4(aq)} + H_2O_{(l)}$ AI_2O_3 Insoluble in water. Amphoteric, it reacts with acids and alkalis to give salts. $AI_2O_{3(s)} + 6HCI_{(aq)} \longrightarrow 2AICI_{3(aq)} + 3H_2O_{(l)}$ with acids $AI_2O_{3(s)} + 2NaOH_{(aq)} + 3H_2O_{(l)} \longrightarrow 2NaAI(OH)_{4(aq)}$ with alkalis

SiO₂

Insoluble in water

Weakly acidic and reacts with alkalis giving silicates.

 $SiO_{2(s)}$ + $2NaOH_{(aq)}$ ----> $Na_2SiO_{3(aq)}$ + $H_2O_{(l)}$

A5

P₄O₁₀ Dissolves to give an acidic solution.

 $P_4O_{10(s)} + 6H_2O_{(l)} \longrightarrow 4H_3PO_{4(aq)}$

SO₂ / SO₃ Acidic, non-metal oxides

Both very soluble and react with water to give acidic solutions.

 $\begin{array}{rcl} SO_{2(g)} & + & H_2O_{(l)} & ~~ & \\ \end{array} & \begin{array}{rcl} & 2H^+_{(aq)} & + & SO_3^{2^-}_{(aq)} & & \end{tabular} weak \ acid \\ SO_{3(l)} & + & H_2O_{(l)} & ~~ & \\ \end{array} & \begin{array}{rcl} & 2H^+_{(aq)} & + & SO_4^{2^-}_{(aq)} & & \end{tabular} strong \ acid \end{array}$

Across the period...

- bonding changes from ionic to covalent
- basic metal oxides change to acidic non-metal oxides
- change from giving alkaline solutions to acidic solutions

Q.1 What are Fajans' Rules? How can they applied to predict covalency?
Q.2 What is the difference between a weak acid and a strong acid?
Q.3 What shapes have the following ions/molecules; SO₂ SO₃²⁻ SO₃ SO₄²⁻
Q.4 Write an equation for the reaction between MgO and nitric acid.
Q.5 Explain, in terms of its structure and bonding, why silica has a high melting point