MOLES

THE MOLE	 IOLE • the standard unit of amount of a substance (mol) • the number of particles in a mole is known as Avogadro's constant (N_A) • Avogadro's constant has a value of 6.02 x 10²³ mol⁻¹. • don't get too 'worked up' about it; it is only a very large number - after all, we use dozen (12); score (20); grand (1000) for certain numbers 2 dozen (24) is twice 1 dozen (12) and 2 moles is twice as many as 1 mole 				
RELATIVE MASS	Relative Atomic Mass (A _r)	The mass of an atom relative to that of the carbon 12 isotope having a value of 12.000			
	or	average mass per atom of an element x 12			
		mass of an atom of ^{12}C			
	* Relative Molecular Mass (M _r)	The sum of all the relative atomic masses present in a molecule			
	or	average mass of a molecule x 12 mass of an atom of ^{12}C			
	NB * Relative Formu	la Mass is used if the species is ionic			
MOLAR MASS	The mass of one mole of substance. units are g mol⁻¹ or kg mol⁻¹ . e.g. the molar mass of water is 18 g mol ⁻¹ molar mass = mass of one particle x Avogadro's constant (6.02 x 10 ²³ mol ⁻¹)				
Example					
<i>Q.1</i>	Calculate the mass of one me	ol of carbon-12 atoms			
	0.5 mc	ol of oxygen-16 atoms			
	0.5 mol of oxygen-16 molecules.				
[mass	of proton 1.672 x 10^{-24} g, mass of neutr	con 1.674 x 10 ⁻²⁴ g, mass of electron 9.109 x 10 ⁻²⁸ g]			

MOLE CALCULATIONS							
Substances	mass molar mass	g g mol ⁻¹	or or	kg kg mol ⁻¹	moles = <u>mass</u> molar mass		
Example	Example Calculate the number of moles of oxygen molecules in 4g						
	oxygen molecules have the formula O_2 the relative mass will be 32g mol ⁻¹						
moles = $\max_{molar\ mass}$ = $4g$ ANS. 0.125 mol Molar mass $32g\ mol^{-1}$							
Q.2	Calculate the number	• of moles in					
	10g of Ca atoms			10g of C	aCO_3		
	4g of hydrogen atoms	3		4g of hyd	lrogen molecules		
	Calculate the mass of						
	2 mol of CH_4			0.5 mol e	of NaNO ₃		
	6 mol of nitrogen atom	ms		6 mol of	nitrogen molecules		
I							

Solutions molarity concentration / mol dm⁻³ volume dm³ or cm³ moles = concentration x volume = molarity x volume in dm³ = molarity x volume in cm³ 1000

2

The **1000** takes into account that there are 1000 cm³ in 1dm³

Example 1 Calculate the number of moles of sodium hydroxide in 25cm³ of 2M NaOH

$$moles = \frac{molarity \ x \ volume \ in \ cm^3}{1000}$$

$$= \frac{2 \text{ mol } dm^{-3} \times 25 cm^3}{1000}$$
 ANS. 0.05 mol

Moles

Moles

Example 2 What volume of $0.1M H_2SO_4$ contains 0.002 moles?

volume = in cm³	1000 x moles molarity	(re-arrangement of above)			
=	1000 x 0.002 0.1 mol dm ⁻³	ANS. 20 cm ³			

Example 3 4.24g of Na_2CO_3 is dissolved in water and the solution made up to 250 cm³. What is the concentration of the solution in mol dm⁻³?

molar mass of Na_2CO_3	$= 106g mol^{-1}$
no. of moles in 250cm ³	$= 4.24g / 106g mol^{-1} = 0.04 mol$
no. of moles in 1000cm ³ (1dm ³)	= 0.16 mol

ANS. 0.16 mol dm⁻³

Q.3Calculate the number of moles in...
Idm³ of 2M NaOH250cm³ of 2M NaOH5dm³ of 2M NaOH250cm³ of 2M NaOH5dm³ of 0.1M HCl25cm³ of 0.2M H2SO425cm³ of 0.2M HCl27.58cm³ of 0.101M H2SO4Calculate the concentration (in mol dm³) of solutions containing
I mol of HCl in 2dm³0.2 mol of HCl in 2dm³0.1 mol of NaOH in 250cm³0.1 mol of H2SO4 in 25cm³

EMPIRICAL FORMULAE AND MOLECULAR FORMULAE

Empirical Formula

Description	Expresses the elements in a simple ratio (e.g. CH_2).
	It can sometimes be the same as the molecular formula (e.g H_2O and CH_4)

- Calculations You need mass, or percentage mass, of each element present
 - · relative atomic masses of the elements present

Example 1 Calculate the empirical formula of a compound containing C (48%), H (4%) and O (48%)

C	н	0
48%	4%	48%
48/12	4/1	48/16
4	4	3
C ₄	H ₄ O ₃	
	48% 48/12 4	48% 4%

Example 2 Calculate the empirical formula of a compound with C (1.8g), O (0.48g), H (0.3g)

	С	Н	0
1) Write out ratios by mass	1.8	0.3	0.48
2) Divide by relative atomic mass	1.8 / 12	0.3/1	0.48 / 16
(this gives the molar ratio)	0.15	0.3	0.03
3) If not whole numbers then scale up			
- try dividing by smallest value (0.03)	5	10	1
<i>4) Express as a formula</i>	C₅H	10 0	

Molecular Formula

Description Exact number of atoms of each element in the formula (e.g. C_4H_8)

Calculations Compare empirical formula relative molecular mass. The relative molecular mass of a compound will be an exact multiple (x1, x2 etc.) of its relative empirical mass.

Example Calculate the molecular formula of a compound of empirical formula CH_2 and relative molecular mass 84.

mass of CH_2 unit	=	14
divide molecular mass (84) by 14		= 6
molecular formula = empirical formula $x 6$	=	$C_{6}H_{12}$

REACTING MASSES - THE LAW OF CONSERVATION OF MASS The masses of all the prducts = the masses of all the reactants

In other words **The total mass of all the atoms in the products is the** same as that of all the atoms in the reactants

Relative masses actual masses	CaCO₃ 100 100g (1 m	> ol)	CaO 56 56g (1 mol)	+	CO ₂ 44 44g (1 mol)	
if you started with	25g (0.25	mol)	0.25 mol (14	g)	0.25 mol (11g)	
Relative masses actual masses	CH ₄ 16 16g	+ 2 O ₂ 32 64g (<mark>2</mark> m	> ol)	CO₂ 44 44g	+ 2H₂O 18 36g (<mark>2</mark> mo	l)
to make 88g CO_2	32g	128g		88g	72g	

Q.4 a) What mass of $CaSO_4$ can be made from 112g of CaO? $CaO + H_2SO_4 \longrightarrow CaSO_4 + H_2O$

- b) What mass of carbon dioxide is made by burning 80kg of CH_4 ? $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$
- c) How much NaOH is needed to make 42.5g of NaNO₃? NaOH + HNO₃ \longrightarrow NaNO₃ + H₂O
- d) Which gives a bigger mass of CO_{2} ; 200g of $CaCO_3$ or 32g of CH_4 ?

[A_r values H =1, C = 12, N = 14, O = 16, Na = 23, S = 32, Ca = 40, Cu = 63.5]

YIELD AND PERCENTAGE YIELD

YIELD	The mass you get
PERCENTAGE YIELD	The mass you get compared with the maximum you ought to get

Q.5 What mass of CuSO₄ can be made from 7.95g of CuO?

 $CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$

A student carried out this experiment. When they weighed the product, they found they had only made 7.20g of $CuSO_4$.

i) What is the yield of $CuSO_4$? ii) What is the percentage yield of $CuSO_4$?

ATOM ECONOMY

Introduction

- in most reactions you only want to make one of the resulting products
 - atom economy is a measure of how much of the products are useful
 - a high atom economy means that there is less waste

Example calculations

Formation of 1,2-dichloroethane, $C_2H_4Cl_2$ 1. $C_2H_4Cl_2$ Equation C_2H_4 + Cl -> 28 71 99 Mr atom economy molecular mass of $C_2H_4Cl_2$ x 100 = molecular mass of all products 99 Х 100 100% 99

2. Formation of nitrobenzene,
$$C_6H_5NO_2$$

Equation C_6H_6 + HNO_3 --> $C_6H_5NO_2$ + H_2O
 M_r 78 63 123 18
atom economy = $\frac{molecular mass of C_6H_5NO_2}{molecular mass of all products}$ x 100
= $\frac{123}{123 + 18}$ x 100 = 87.2%

З. Preparation of ammonia from the decomposition of ammonium sulphate Equation $(NH_4)_2SO_4$ H_2SO_4 + $2NH_3$ —> Mr 132 98 17 **2** \mathbf{x} molecular mass of NH_3 atom economy x 100 = molecular mass of all products x 100 = 25.8% **2** x 17 = $98 + (2 \times 17)$

Summary • addition reactions will have 100% atom economy

- substitution reactions will have less than 100% atom economy
- elimination reactions will have less than 100% atom economy
- high atom economy = fewer waste materials

= **GREENER** and **MORE ECONOMICAL**

Notes the percentage yield of a reaction must also be taken into consideration

- some reactions may have a high yield but a low atom economy
- some reactions may have a high atom economy but a low yield

MOLAR GAS VOLUME (MOLAR VOLUME)

At rtpThe molar volume of any gas at rtp is 24 dm³ mol⁻¹ (0.024 m³ mol⁻¹)rtpRoom Temperature and Pressure

At stpThe molar volume of any gas at stp is 22.4 dm³ mol⁻¹ (0.0224 m³ mol⁻¹)stpStandard Temperature and Pressure (273K and 1.013 x 10⁵ Pa)

example 0.5g of a gas occupies 250cm³ at rtp. Calculate its molar mass.

250 cm ³	has a mass of	0.5g	
1000 cm³ (1dm³)	has a mass of	2.0g	x4 to convert to dm ³
24 dm ³	has a mass of 4	48.0g	x24 to convert to 24dm ³

ANSWER: The molar mass is 48.0g mol⁻¹

Q.6 Calculate the mass of...

- a) 2.4 dm^3 of carbon dioxide, CO₂ at rtp
- b) 120 cm³ of sulphur dioxide, SO_2 at rtp
- c) 0.08g of a gaseous hydrocarbon occupies 120cm³ at rtp. Identify the gas.

Calculations	meth	ods include usingthe ideal gas equationthe Molar Volume at s				
	For 1 mole of gas			PV	= R T	PV = nRT
	for n moles of gas			PV	= nRT	
(as moles = mass/molar mass) PV	= <u>m R T</u> M	$PV = \frac{m R T}{M}$	
	where	P V n	pressure volume number of mole	es of gas	-	Pa) or N m⁻² re are 10 ⁶ cm ³ in a m ³)
		R	gas constant	-	8.31 J K ⁻¹	mol ⁻¹
		Т	temperature		Kelvin	(K = °C + 273)
		m	mass		g or Kg	

- M molar mass
- Old units **1 atmosphere** is equivalent to **760 mm/Hg** or **1.013 x 10⁵ Pa** (Nm⁻²) 1 litre (1 dm³) is equivalent to $1 \times 10^{-3} \text{ m}^3$

g mol⁻¹ or Kg mol⁻¹

Example 1 Calculate the number of moles of gas present in 500cm³ at 100 KPa pressure and at a temperature of 27°C.

P V T R	= 100 KP = 500 cm = 27 + 27 = 8.31 J P	3 '3	x 10	+6	=	100000 0.0005 300 K 8.31			
PV=	nRT		n	= <u>PV</u> R7		=	1 <u>00000 x 0.000</u> 300 x 8.31	05	= 0.02 mol

Example 2 Calculate the relative molecular mass of a vapour if 0.27g of gas occupy 400 cm³ at a temperature of 227°C and a pressure of 100 KPa.

Ρ	= 100 KPa	= 100000 Pa
V	$= 400 cm^3 \qquad x 10^{-6}$	$= 0.0004 m^3$
Т	= 227 + 273	= 500 K
т	= 0.27g	= 0.27g
R	= 8.31 J K ⁻¹ mol ⁻¹	= 8.31

$$PV = \frac{mRT}{M}$$
 \therefore $M = \frac{mRT}{PV} = \frac{0.27 \times 500 \times 8.31}{100000 \times 0.0004} = 28.04$

- Q.7 Convert the following volumes into m³ a) 1dm³ b) 250cm³ c) 0.1cm³
 - Convert the following temperatures into Kelvin
 a) 100°C
 b) 137°C
 c) -23°C
 - Calculate the volume of 0.5 mol of propane gas at 298K and 10⁵ Pa pressure

• Calculate the mass of propane (C_3H_8) contained in a 0.01 m³ flask maintained at a temperature of 273K and a pressure of 250kPa.

Calculation The volume of a gas varies with temperature and pressure. To convert a volume to that which it will occupy at stp (or any other temperature and pressure) one use the relationship which is derived from Boyle's Law and Charles' Law.

$$\frac{\mathbf{P}_1\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2\mathbf{V}_2}{\mathbf{T}_2}$$

where **P**₁ initial pressure

- initial volume V₁
- initial temperature (in Kelvin) T₁
- P_2 final (in this case, standard) pressure
- final volume (in this case, at stp) V_2
- final (in this case, standard) temperature (in Kelvin) T₂
- *Calculations* Convert the volume of gas to that at stp then scale it up to the molar volume. The mass of gas occupying 22.4 dm³ (22.4 litres, 22400cm³) is the molar mass.
- Experiment It is possible to calculate the molar mass of a gas by measuring the volume of a given mass of gas and applying the above equations.

Methods	 Gas syringe method Victor Meyer method Dumas bulb method 							
Example	A sample of gas occupies 0.25 dm³ at 100°C and 5000 Pa pressure. Calculate its volume at stp [273K and 100 kPa].							
	P_1 initial pressure= 5000 Pa P_2 final pressure= 100000 Pa V_1 initial volume= 0.25 dm^3 V_2 final volume= ? T_1 initial temperature= 373K T_2 temperature= 273K							
	thus $\frac{5000 \times 0.25}{373} = \frac{100000 \times V_2}{273}$							
	therefore $V_2 = \frac{273 \times 5000 \times 0.25}{373 \times 100000} = \frac{0.00915 dm^3}{(9.15 dm^3)}$							
example	1g of gas occupies 278cm ³ at 25°C and 2 atm pressure. Calculate its molar mass.							
	<i>i)</i> convert to stp $\frac{2 \times 278}{298} = \frac{1 \times V}{273}$ \therefore $V = \frac{278 \times 2 \times 273}{1 \times 298} = 509 \text{ cm}^3$							
	ii) convert to molar volume 1g occupies 509cm ³ at stp 1/509g occupies 1cm ³ 22400 x 1/509g occupies 22400cm ³							

therefore 44g occupies 22.4 dm³ a	22.4 dm^3 at stp
-----------------------------------	----------------------------

ANSWER: The molar mass is 44g mol⁻¹

Gay-Lussac's Law of Combining Volumes

Statement "When gases combine they do so in volumes that are in a simple ratio to each other and to that of any gaseous product(s)"

N.B. all volumes must be measured at the same temperature and pressure.

Avogadro's Theory

Statement "Equal volumes of all gases, at the same temperature and pressure, contain equal numbers of molecules"

- **Calculations** Gay-Lussac's Law and Avogadro's Theory are used for reacting gas calculations.
- example 1 What volume of oxygen will be needed to ensure that 250cm³ methane undergoes complete combustion at 120°C? How much carbon dioxide will be formed?

CH _{4(g)}	+ 20 _{2(g)}	——>	CO _{2(g)}	+ $2H_2O_{(g)}$
1 molecule	2 molecules		1 molecule	2 molecules
1 volume	2 volumes		1 volume	2 volumes (a gas at 120°C)
250cm ³	500cm ³		250cm ³	500cm ³

ANS. 500cm³ of oxygen and 250cm³ of carbon dioxide.

Special tips An excess of one reagent is often included; e.g. excess O₂ ensures complete combustion

Check the temperature, and state symbols, to check which compounds are not gases. This is especially important when water is present in the equation.

example 2 20cm³ of propane vapour is reacted with 120cm³ of oxygen at 50°C. Calculate the composition of the final mixture at the same temperature and pressure?

$C_{3}H_{8(g)}$	+ 50 _{2(g)} -	> 3CO _{2(g)} +	⊢ 4H ₂ O _(l)	
1 molecule	5 molecules	3 molecules	4 molecules	
1 volume	5 volumes	3 volumes	negligible (it is a liquid at 5	0°C)
20cm ³	100cm ³	60cm ³		
2	20cm ³ will be uni	used		

ANSWER 20cm³ of unused oxygen and 60cm³ of carbon dioxide.

Knockhardy Publishing

Q1 12.0858
$$16.1144$$
 32.22888
Q1 12.0858 16.1144 32.22888
Q1 12.0858 16.1144 32.22888
Q1 12.0858 16.1144 32.22888
Q1 12.0858 16.1144 32.2288
 16.146 6.25 mol 10.146 6.25 mol 10^{-1} mol 10^{-2}
 10^{-1} mol 10^{-2} (0.4 m) 10^{-2} mol 10^{-