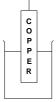
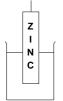
ELECTROCHEMISTRY


1

REDOX	Reduction	gain of electrons	Cu²⁺ (aq) + 2e⁻ > Cu (s)
	Oxidation	removal of electrons	Zn (s)> Zn²⁺ (aq) + 2e ⁻


HALF CELLS • these are systems involving oxidation or reduction

• there are several types

METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

Cu²+(aq) + 2e [−]
copper
Cu ²⁺ (aq) (1M) - 1M copper sulphate solution
+ 0.34V

Reaction	Zn²+(aq) + 2e⁻
Electrode	zinc
Solution	Zn²⁺ (aq) (1M) - 1M zinc sulphate solution
Potential	- 0.76V

GASES IN CONTACT WITH SOLUTIONS OF THEIR IONS

Reaction	2H⁺(aq) + 2e [−] → H ₂ (g)
Electrode	platinum - you need a metal to get electrons in and out
Solution	H+(aq) (1M) - 1M hydrochloric acid or 0.5M sulphuric
Gas	hydrogen at 100kPa (1 atm) pressure
Potential	0.00V
IMPORTANC	<i>E</i> This half cell is known as THE STANDARD
	HYDROGEN ELECTRODE

PLATINUM

Ľ

SOLUTIONS OF IONS IN TWO DIFFERENT OXIDATION STATES

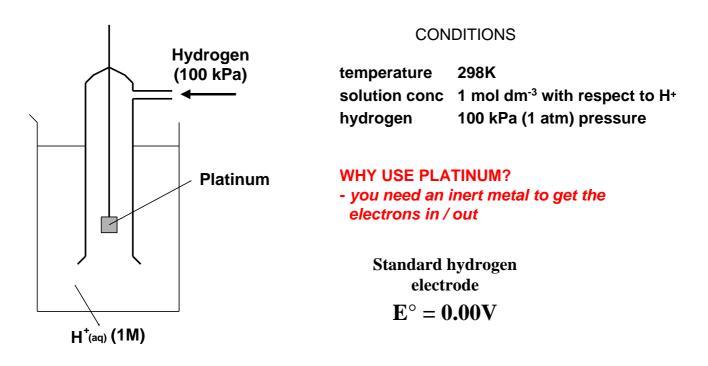
Reaction	Fe³⁺(aq) + e [−] − − − − − − − − − − − − − − − − − −
Electrode	platinum - you need a metal to get electrons in and out
Solution	Fe ³⁺ (aq) (1M) and Fe ²⁺ (aq) (1M)
Potential	+ 0.77 V

SOLUTIONS OF OXIDISING AGENTS IN ACID SOLUTION

Reaction	$MnO_{4}(aq) + 8H^{+}(aq) + 5e^{-} = Mn^{2+}(aq) + 4H_{2}O(l)$
Electrode	platinum - you need a metal to get electrons in and out
Solution	$MnO_4^{-}(aq)$ (1M) and $Mn^{2+}(aq)$ (1M) and $H^{+}(aq)$
Potential	+ 1.52 V

CELL **POTENTIAL** • each electrode / electrolyte combination has its own half-reaction

- Measurement it is impossible to measure the potential of a single electrode BUT...
 - you can measure the potential difference between two electrodes
 - value is measured relative to a refernce cell under standard conditions

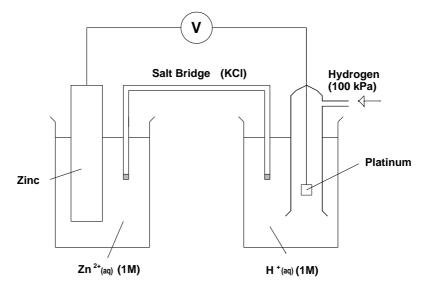

STANDARD ELECTRODE (REDOX) POTENTIAL

The potential difference of a cell when the electrode is connected to the standard hydrogen electrode under standard conditions

The value is affected by ... • temperature

- - pressure of any gases solution concentration

The ultimate reference is the STANDARD HYDROGEN ELECTRODE.


However, as it is **difficult to set up**, **secondary standards** are used.

Secondary

- The standard hydrogen electrode (SHE) is hard to set up so it is easier to use a standards more convenient secondary standard which has been calibrated against the SHE.
- Calomel the calomel electrode contains Hg₂Cl₂
 - it has a standard electrode potential of +0.27V
 - is used as the left hand electrode to determine the potential of an unknown
 - to obtain the E° value of the unknown cell ADD 0.27V to the measured potential

Experimental determination of E°

In the diagram below the standard hydrogen electrode is shown coupled up to a zinc half cell. The voltmeter reading gives the standard electrode potential of the zinc cell.

- salt bridge filled with saturated potassium chloride solution
 - enables the circuit to be completed

THE ELECTROCHEMICAL SERIES

Layout Species are arranged in order of their standard electrode potentials to get a series that tells us how good a species is (as an oxidising agent) at picking up electrons.

All equations are written as reduction processes ... i.e. gaining electrons

e.g.	Al ³⁺ (aq) + 3e ⁻	·	Al(s)	$E^{\circ} = -1.66V$
	$Cl_{2(g)} + 2e^{-}$		2 <i>Cl⁻(aq)</i>	$E^\circ = +1.36V$

The species with the more positive potential (E° value) will oxidise one (i.e. reverse the equation) with a lower E° value.

Example What will happen if an $Sn(s) / Sn^{2+}(aq)$ cell and a $Cu(s) / Cu^{2+}(aq)$ cell are connected?

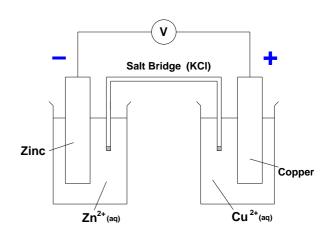
- Write out the appropriate equations $Cu^{2+}(aq) + 2e^{-} \iff Cu(s)$; $E^{\circ} = +0.34V$ $Sn^{2+}(aq) + 2e^{-} \iff Sn(s)$; $E^{\circ} = -0.14V$
- the half reaction with the more positive E° value is more likely to work
- it gets the electrons by reversing the half reaction with the lower E° value
- therefore $Cu^{2+}(aq) \longrightarrow Cu(s)$ and $Sn(s) \longrightarrow Sn^{2+}(aq)$
- the overall reaction is $Cu^{2+}(aq) + Sn(s) \longrightarrow Sn^{2+}(aq) + Cu(s)$
- the cell voltage is the difference in E° values ... (+0.34) (-0.14) = + 0.48V

THE ELECTROCHEMICAL SERIES

			${f E}^\circ$ / ${f V}$	
$F_{2(g)} + 2e^{-}$	<u> </u>	2F ⁻ (aq)	+2.87	
$H_2O_2({\rm aq}) \ + \ 2H^+({\rm aq}) \ + \ 2e^-$		2H ₂ O(1)	+1.77	T
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-}$		$Mn^{2+}({\rm aq}) \ + \ 4H_2O({\rm l})$	+1.52	
$PbO_{2(s)} + 4H^{+}(aq) + 2e^{-}$		$Pb^{2+}_{(aq)} \ + \ 2H_2O(l)$	+1.47	reaction is more
$Ce^{4+}(aq) + e^{-}$		Ce ³⁺ (aq)	+1.45	likely to go right
$Cl_{2(g)}$ + $2e^{-}$		2Cl ⁻ (aq)	+1.36	
$Cr_2O_7{}^{2-}({aq}) \ + \ I4H^+({aq}) \ + \ 6e^-$	<u> </u>	$2Cr^{3+}{\rm (aq)} \ + 7H_2O{\rm (l)}$	+1.33	LH species better
$MnO_{2}(s) + 4H^{+}(aq) + 2e^{-}$	<u> </u>	$Mn^{2+}({\rm aq}) \ + \ 2H_2O({\rm l})$	+1.23	oxidising agents
$Br_2(l) + 2e^-$	<u> </u>	2Br ⁻ (aq)	+1.07	
$Ag^+(aq) + e^-$	<u> </u>	Ag(s)	+0.80	RH species weaker reducing agents
$Fe^{3+}(aq) + e^{-}$	<u> </u>	Fe ²⁺ (aq)	+0.77	
$O_2(g)$ + $2H^+(aq)$ + $2e^-$	<u> </u>	$H_2O_2(1)$	+0.68	RH species are
$I_{2}(s) + 2e^{-}$	$ \longrightarrow$	2I ⁻ (aq)	+0.54	harder to oxidise
$Cu^+(aq) + e^-$	$ \longrightarrow$	Cu(s)	+0.52	
$Cu^{2+}(aq) + 2e^{-}$	$ \longrightarrow$	Cu(s)	+0.34	LH species are
$Cu^{2+}(aq) + e^{-}$		Cu ⁺ (aq)	+0.15	easier to reduce
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-}$		$Sn^{2+}(aq)$	+0.15	
2H ⁺ (aq) + 2e ⁻		H ₂ (g)	0.00	
$Pb^{2+}(aq) + 2e^{-}$	<u> </u>	Pb(s)	-0.13	
$\mathrm{Sn}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-}$		Sn(s)	-0.14	
$Ni^{2+}(aq) + 2e^{-}$		Ni(s)	-0.25	reactivity of metals decreases
$Cr^{3+}(aq) + e^{-}$		$Cr^{2+}(aq)$	-0.41	
$Fe^{2+}(aq) + 2e^{-}$		Fe(s)	-0.44	reactivity of
$Zn^{2+}(aq) + 2e^{-}$		Zn(s)	-0.76	non-metals increases
$Al^{3+}(aq) + 3e^{-}$		Al(s)	-1.66	
$Mg^{2+}(aq) + 2e^{-}$		Mg(s)	-2.38	
$Na^+(aq) + e^-$		Na(s)	-2.71	
$Ca^{2+}(aq) + 2e^{-}$	<u> </u>	Ca(s)	-2.87	
$K^+(aq) + e^-$		K(s)	-2.92	

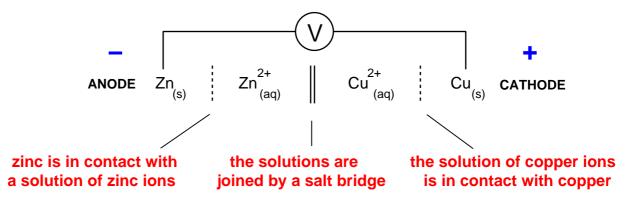
Interpretation	F_2 is the best oxidising agent	- highest E° value; most feasible reaction
	K ⁺ is the worst oxidising agent	- lowest E° value; least feasible reaction
	K is the best reducing agent	- most feasible reverse reaction

Use of E° • used to predict the feasibility (likelihood) of redox and cell reactions


- in theory ANY REDOX REACTION WITH A POSITIVE E° VALUE WILL WORK
- in practice, it will proceed if the E° value is greater than + 0.40V

An equation with a more positive E° value will reverse a less positive one.

Combining half-cells


In the cell, copper has a more positive E° value (+0.34V) than zinc (-0.76V).

- the zinc metal is more reactive
- it dissolves to give ions
 Zn(s) —> Zn²⁺(aq) + 2e⁻
- the electrons produced go round the external circuit to the copper
- electrons are picked up by copper ions and copper is deposited
 Cu²⁺(ag) + 2e⁻ -> Cu(s)
- The voltage of the cell is 1.10V

ie (+0.34V) - (-0.76V)

Cell diagramsThese give a diagrammatic representation of what is happening in a cell.Place the cell with the more positive E° value on the RHS of the diagram.

Drawing it out as shown indicates that ...

- the cell reaction goes from left to right
- the electrons go round the external circuit from left to right
- the cell voltage is E°(RHS) E°(LHS). In this way it must be positive
- oxidation takes place at the anode and reduction at the cathode

Conclusion

The reaction(s) will proceed from left to right

OX idation	$Zn(s)$ —> $Zn^{2+}(aq)$ + $2e^{-}$ at the ANODE
RED uction	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$ at the CATHODE
Electrons	Go from the anode to the cathode via the external circuit
Cell reaction	Zn(s) + Cu ²⁺ (aq)> Zn ²⁺ (aq) + Cu(s)
Cell voltage	E°(RHS) - E°(LHS) = 0.34V - (- 0.76V) = 1.10V

 $Sn(s) + Cu^{2+}(aq) \longrightarrow Sn^{2+}(aq) + Cu(s)$

Example Will this reaction be spontaneous?

- Method Write out the half equations $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$; $E^{\circ} = +0.34V$ as reductions with their E° values $Sn^{2+}(aq) + 2e^{-} \implies Sn(s)$; $E^{\circ} = -0.14V$
 - The reaction which occurs involves the more positive one reversing the other therefore Cu²⁺(aq) -> Cu(s) and Sn(s) -> Sn²⁺(aq)
 - If this is the equation you want (which it is) then it will be spontaneous
 - The cell voltage is the difference in E° values... (+0.34V) (-0.14V) = + 0.48V

NOTE: DOUBLING AN EQUATION DOES NOT DOUBLE THE E° VALUE

¹⁄₂Cl₂(g)	+ e ⁻		CI [−] (aq)	E° = +1.36V
Cl ₂ (g)	+ 2e⁻	<u> </u>	2CI⁻(aq)	E° = +1.36V

Q.1 Which of the following reactions occur spontaneously?

• $Fe(s)$ + $Zn^{2+}(aq)$	>	$Fe^{2+}(aq) + Zn(s)$
• $Sn^{4+}(aq) + 2Fe^{2+}(aq)$	>	$2Fe^{3+}(aq) + Sn^{2+}(aq)$
• $Sn^{4+}(aq)$ + $2I^{-}(aq)$	>	$I_2(s) + Sn^{2+}(aq)$
• $Cl_2(g)$ + $2Br(aq)$	>	$Br_{2}(g)$ + $2Cl^{-}(aq)$
• $I_2(s)$ + $2Br(aq)$	>	$Br_{2}(g) + 2I^{-}(aq)$
• $2H^+(aq)$ + $Zn(s)$	>	$H_2(g) + Zn^{2+}(aq)$

For those that work, calculate the cell voltage.

IMPORTANT WARNING

Limitation of using E° to predict the feasibility of a reaction

- KineticStandard electrode potentials are not always accurate in their predictions.
They indicate if a reaction is possible but cannot say what the rate will be.
Some reactions will not be effective as they are too slow.
- **Conditions** Because **TEMPERATURE** and **CONCENTRATION** affect the value of a standard electrode potential any variation can also affect the probability of a reaction taking place. Concentrations do change during a reaction.

Apply le Chatelier's principle to predict the change in E°

Q.2 Explain what reactions, if any, will occur if aqueous solutions of KCl, KBr and KI are treated with; a) acidified $KMnO_4$ b) acidified $K_2Cr_2O_7$. 7

Q.3 Using E° values, explain why zinc reacts with dilute acids to produce hydrogen gas but silver doesn't

.Q.4 Construct a cell diagram for a cell made up from Ni^{2+}/Ni and Zn^{2+}/Zn . Work out the overall reaction and calculate the potential difference of the cell.

Q.5 Why is hydrochloric acid not used to acidify potassium manganate(VII)?

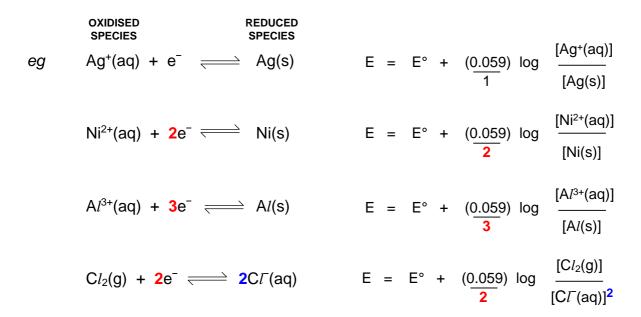
Q.6 Explain why the chemistry of copper(I) in aqueous solution is limited. The following half equations will help. Name the overall process which takes place.

 $\begin{array}{ccc} Cu^+(aq) + e^- & \longrightarrow & Cu(s) & E^\circ = \ + \ 0.52V \\ Cu^{2+}(aq) + e^- & \longrightarrow & Cu^+(aq) & E^\circ = \ + \ 0.15V \end{array}$

THE NERNST EQUATION

CIE

Calculates a half-cell potential under non-standard conditions


Basics

- equations relating to Electrode Potentials (EP) are written as equilibria
 - E° values gives a measure of the position of the equilibrium
 - equilibrium moves to the left EP value is less positive
 - equilibrium moves to the right EP value is more positive
 - in its SIMPLIFIED FORM, the Nernst equation is written...

- where E° standard electrode potential
 - E electrode potential
 - z number of electrons transferred
 - [] concentration in mol dm⁻³

The concentrations are raised to powers, as with equilibrium constants

Notice that the concentration of $C\Gamma(aq)$ has been squared as it appears twice in the equation

Q.7 Write out Nernst equations for each of the following half cells...

- $Zn^{2+}(aq) + 2e^{-} \implies Zn(s)$
- $Sn^{4+}(aq) + 2e^{-} \implies Sn^{2+}(aq)$
- $I_2(s)$ + $2e^ \implies$ $2I^-(aq)$
- $Na^+(aq)$ + e⁻ \longrightarrow Na(g)

ectrochemistry	/	c	IE		
ample 1	Fe ³⁺ (aq)	+ e ⁻ = Fo	$E^{2+}(aq)$ $E^{\circ} = +0.77$	7 V	
(a)	standard condit (by definition)	-	(aq)] (oxidised species (aq)] (reduced species	,	
	therefore	E = E° +	$(0.059) \log \frac{1.00}{1.00}$		
	as log 1 = 0	E = E° = ·		sly, there is no chang ditions are standard)	
(b)	non-standard conditions [Fe ³⁺ (aq)] (oxidised species) = 0.50 mol dm^{-1} [Fe ²⁺ (aq)] (reduced species) = 1.50 mol dm^{-1}				
	therefore	E = E° -	$(0.059) \log \frac{0.50}{1.50}$		
		E = +0.77 +	0.059 log 0.333		
			0.059 x -0.477		

In Decreasing the concentration of Fe³⁺ will, according to Le Chatelier, make the equilibrium move to the left of the equation and make the forward reaction less likely. The electrode potential becomes less +ive.

(c) equal concentration of ions

electrode potential doesn't change (because the log value is 0)

Problem With Fe³⁺ / Fe²⁺, **both species were in solution** - one can use concentrations What happens if gases and/or solids are in the equations?

ASSUME their concentrations are 1 (it is too complicated to explain at A level)

Example 2 Calculate the potential of a Cu^{2+}/Cu half cell where $[Cu^{2+}(aq)] = 0.50$ mol dm⁻³

 $Cu^{2+}(aq) + 2e^{-} \equiv Cu(s)$ $E^{\circ} = + 0.34 V$ [Cu²⁺(aq)] (oxidised species) = 0.50 mol dm^{-3} [Cu(s)] (reduced species) taken as 1 (as it is a solid) therefore 0.50 (0<u>.05</u>9) log $E = E^{\circ} +$ (z = 2)2 E = E° 0.0295 log 0.50 + + 0.0295 x -0.301 +0.34+0.340.00888 = + 0.33V-

Comment Decreasing the concentration of Cu²⁺ will, according to Le Chatelier, make the equilibrium move to the left of the equation making the forward reaction less likely. The electrode potential becomes less +ive.

Example 3 Calculate the potential of a Cl_2 / Cl half cell where [Cl (aq)] = 0.10 mol dm⁻³

 $E^{\circ} = +1.36 V$ $Cl_2(g) + 2e^- \implies 2Cl^-(aq)$ (oxidised species) $[Cl_2(g)]$ taken as 1 (reduced species) [C*l*⁻(aq)] = 0.10 mol dm⁻³ [Cl (aq)] has therefore E° E = (0.059) log been squared as (z = 2)2 0.10 x 0.10 it appears twice in the equation = + 1.360.0295 log 100 + 0.0295 x 2 +1.36+ = + 1.42V + 1.360.059 +

Comment Decreasing the concentration of
$$C\Gamma(aq)$$
 will, according to Le Chatelier,
make the equilibrium move to the right of the equation making the
forward reaction more likely. The electrode potential becomes more +ive.

•	$Zn^{2+}(aq) + 2e^{-} \Longrightarrow$	Zn(s)	$E^{\circ} = -0.76V$	$[Zn^{2+}] = 0.2 \ mol \ dm^{-3}$
•	$Sn^{4+}(aq) + 2e^- $	$Sn^{2+}(aq)$	$E^{\circ} = +0.15V$	$[Sn^{2+}] = 0.2 \mod dm^{-3}$ $[Sn^{4+}] = 0.1 \mod dm^{-3}$

CIE