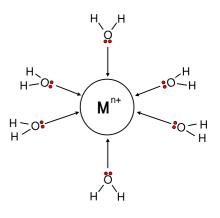
F325

The aqueous chemistry of cations

- Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules
 - · hydrolysis can occur and the resulting solution can become acidic
 - the acidity of the resulting solution depends on the cation present
 - the greater the charge density of the cation, the more acidic the solution

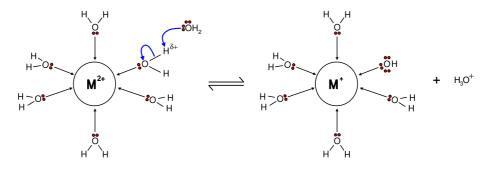
cation	charge	ionic radius	reaction with water and trend in pH of chloride
Na	1+	0.095 nm	
Mg	2+	0.065 nm	
AI	3+	0.050 nm	


the greater charge density of the cation, the greater the polarising power and the more acidic the solution

Q.1 Predict what will happen when SiCl₄ is added to water.

Theory

aqueous metal ions attract water molecules


- many have six water molecules surrounding
- these are known as hexaaqua ions
- they are octahedral in shape
- water acts as a Lewis Base lone pair donor
- water forms a co-ordinate bond to the metal ion
- metal ions accept the lone pair Lewis Acids

Acidity

• as charge density increases, the cation exhibits a greater attraction for water

- the attraction extends to the shared pair of electrons in the O-H bonds of water
- the electron pair is pulled towards the O, making the bond more polar
- this makes the H more acidic (more δ +)
- it can then be removed by solvent water molecules to form H₃O⁺_(aq).

2				F32	5		Tra	ansition Metals
Equations	M ²⁺	[M(H₂O) ₆] ²⁺ (aq) +	F	$H_2O(I)$	$\overline{\overline{\ }}$	[M(H ₂ O) ₅ (OH)] ⁺ (aq)	+	H₃O ⁺ (aq)
	M ³⁺	[M(H₂O) ₆] ³⁺ (aq) +	I	H ₂ O(I)	<u> </u>	[M(H ₂ O) ₅ (OH)] ²⁺ (aq)	4	• H₃O ⁺ (aq)

- the resulting solution is acidic as there are more protons in the water
- the greater the charge density of the cation, the more the equilibrium lies to RHS
- the reaction is known as hydrolysis the water causes the substance to split up

Stronger bases (e.g. CO_3^{2-} , NH_3 and OH^-) can remove further protons ...

- Lewis bases can attack the water molecules co-ordinated to metal ions.
- protons can be removed from each water molecule turning the water from a neutral molecule to a negatively charged hydroxide ion.
- this will affect the overall charge on the complex ion.

ADD BASE - EQUILIBRIUM MOVES TO THE RIGHT ADD ACID - EQUILIBRIUM MOVES TO THE LEFT

 $[M(H_2O)_6]^{2+}(aq) \iff [M(OH)(H_2O)_5]^{+}(aq) \iff [M(OH)_2(H_2O)_4](s) \iff [M(OH)_2(H_2O)_4](s)$

 $[\mathsf{M}(\mathsf{OH})_3(\mathsf{H}_2\mathsf{O})_3]^-_{(\mathsf{aq})}(\mathsf{aq}) \iff [\mathsf{M}(\mathsf{OH})_4(\mathsf{H}_2\mathsf{O})_2]^{2^-}(\mathsf{aq}) \iff \mathsf{M}(\mathsf{OH})_5(\mathsf{H}_2\mathsf{O})]^{3^-}(\mathsf{aq})$

──── [M(OH)₆]^{4−}(aq)

When sufficient protons have been removed the complex becomes **neutral** and precipitation of a hydroxide or carbonate occurs.

e.g. M^{2+} ions $[M(H_2O)_4(OH)_2](s)$ or $M(OH)_2$ M^{3+} ions $[M(H_2O)_3(OH)_3](s)$ or $M(OH)_3$

In some cases, if the base is strong, further protons are removed and the precipitate dissolves as soluble anionic complexes are formed.

e.g. [M(OH)₆]³⁻(aq) an octahedral, hexahydroxo ion

Summary	Very weak bases	H ₂ O	remove few protons
	Weak bases	NH ₃ , CO ₃ ²⁻	remove protons until precipitation
	Strong bases	OH⁻	can remove all the protons

Stability Constant - K_{stab}

Definition The stability constant, K_{stab}, of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions.

in the reaction	[M(H₂O) ₆] ²⁺ (aq) + 6X ⁻ (aq)	<u> </u>	[MX ₆]	^{4–} (aq) + 6H₂O (I)
the expression for	r the stability constant is	K _{stab}	=	[MX₆^{4–} (aq)]
Note that the v	water isn't included		[[M(H ₂ O) ₆] ²⁺ (aq)] [X ⁻ (aq)] ⁶

The LARGER the value of K_{stab} - the more the equilibrium lies to the right - the more stable the complex ion formed

Because ligand exchange involves a series of equilibria, each step in the process has a different stability constant;

			i stab / diff file
$[Co(H_2O)_6]^{2+}(aq) + NH_3(aq)$	<u> </u>	$[Co(NH_3)(H_2O)_5]^{2+}(aq) + H_2O(I)$	$K_1 = 1.02 \times 10^{-2}$
$[Co(NH_3)(H_2O)_5]^{2+}(aq) + NH_3(aq)$		$[Co(NH_3)_2(H_2O)_4]^{2+}(aq) + H_2O(I)$	$K_2 = 3.09 \times 10^{-2}$
$[Co(NH_3)_2(H_2O)_4]^{2+}(aq) + NH_3(aq)$	<u> </u>	$[Co(NH_3)_3(H_2O)_3]^{2+}(aq) + H_2O(I)$	$K_3 = 1.17 \times 10^{-1}$
$[Co(NH_3)_3(H_2O)_3]^{2+}(aq) + NH_3(aq)$		$[Co(NH_3)_4(H_2O)_2]^{2+}(aq) + H_2O(I)$	$K_4 = 2.29 \times 10^{-1}$
$[Co(NH_3)_4(H_2O)_2]^{2+}(aq) + NH_3(aq)$	$\overline{}$	$[Co(NH_3)_5(H_2O)]^{2+}(aq) + H_2O(I)$	$K_5 = 8.70 \times 10^{-1}$

The **overall stability constant** is simply the equilibrium constant for the total reaction. It is found by multiplying the individual stability constants... $k_1 \times k_2 \times k_3 \times k_4 \dots$ etc

 K_{stab} or pK_{stab} ?For an easier comparison,
the expression pK_{stab} is often used. $pK_{stab} = -log_{10}K_{stab}$

Q.2 Write an expression for the stability constant for the following reaction $[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \iff [CuCl_4]^{2-}(aq) + 6H_2O(l)$

Summary • The larger the stability constant, the further the reaction lies to the right

- Complex ions with large stability constants are more stable
- Stability constants are often given as pK_{stab}
- \bullet Complex ions with smaller $\mathsf{pK}_{\mathsf{stab}}$ values are more stable

3

Ketah / dm³ mol⁻¹

The First Row Transition Elements - an introduction

Definition D-block elements forming one or more stable ions with partially filled (incomplete) d-sub shells. The first row runs from Sc to Zn filling the 3d orbitals.

Q.3 Why, in terms of energy levels, are the 4s orbitals filled before the 3d orbitals ?

Electronic

configs. The filling proceeds according to the usual rules except that chromium and copper change slightly to achieve a more stable configuration.

	4s	3d		
Sc			1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ² 0	r [Ar] 3d ¹ 4s
Ti				
v				
Cr				
Mn				
Fe				
Co				
Ni				
Cu				
Zn				

The characteristic properties arise from an incomplete d sub-shell in atoms or ions

Metallic

- **properties** all the transition elements are metals
 - strong metallic bonds result from small size and close packing of the atoms
 - higher melting and boiling points and higher densities than s-block metals

	Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	etc.
m. pt / ℃	63	850	1400	1677	1917	1903	1244	1539	1495	
density / g cm ⁻³	0.86	1.55	3	4.5	6.1	7.2	7.4	7.9	8.9	

Variable oxidation state

- arises from the similar energies required for removal of 4s and 3d electrons.
 - maximum oxidation state rises across the group to manganese
 - then falls as the energy required to remove more electrons becomes very high
 - all (except scandium) have an M²⁺ ion
 - stability of the +2 state increases across the row marked increase in 3rd I.E.

Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn
				+7					
			+6	+6	+6				
		+5	+5	+5	+5				
	+4	+4	+4	+4	+4	+4			
+3	+3	+3	+3	+3	+3	+3	+3	+3	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
								+1	

N.B. When electrons are removed they come from the 4s orbitals first

e.g.	Cu	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹
	Cu⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰
	Cu ²⁺	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁹

Ti $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$ Ti²⁺ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$ Ti³⁺ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$ Ti⁴⁺ $1s^2 2s^2 2p^6 3s^2 3p^6$

• ions with a d¹⁰ (full) or d⁰ (empty) configuration are colourless

• ions with partially filled d-orbitals tend to be coloured

- caused by the ease of transition of electrons between energy levels
- energy is absorbed when an electron is promoted to a higher level
- the frequency of light is proportional to the energy difference
- colour depends on ... transition element oxidation state ligand coordination number

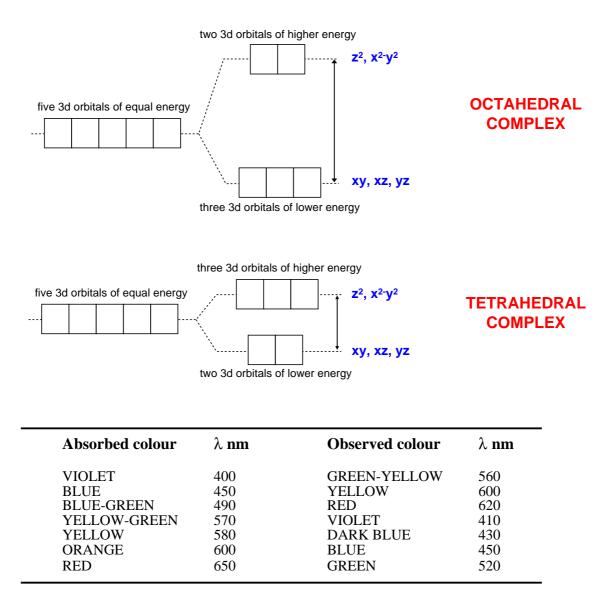
Q.4 Find out the colours of the following ions in aqueous solution

Sc^{3+}	V^{2+}	Fe^{2}	
Fe^{3+}	Co^{2+}	Zn^{2+}	
Cr^{3+}	Mn^{2+}	Cu^{2+}	

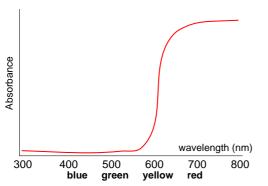
Splitting of

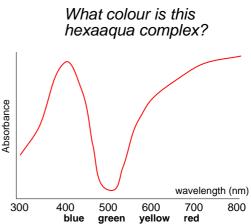
6

d orbitals

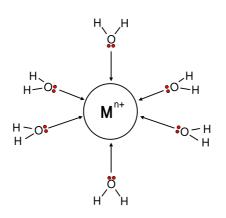

Placing ligands around a central metal ion changes the energies of the d orbitals. Some of the d orbitals gain energy and some lose energy

F325


The amount of splitting depends on the	•	central ion
	•	ligand


The difference in energy between the new levels affects how much energy will be absorbed when an electron is promoted to a higher level.

The amount of energy will govern the colour of light which will be absorbed.



COMPLEX IONS

Formed when species called **ligands** form **co-ordinate bonds** to a central species such as a transition metal ion.

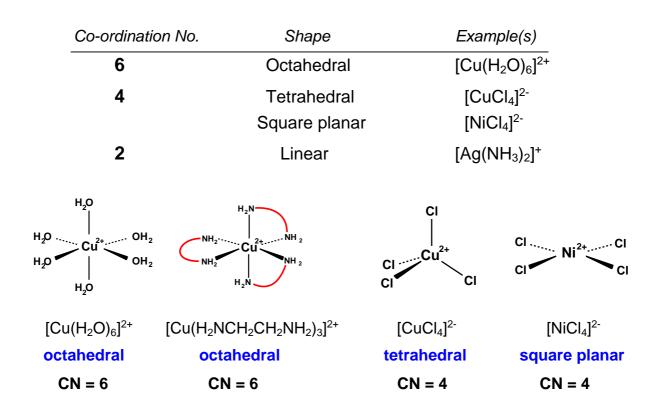
F325

Ligands • atoms, or ions, which possess lone pairs of electrons

- form co-ordinate bonds to the central ion
- · donate a lone pair of electrons into vacant orbitals on the central species

Ligand	Formula	Name of ligand
chloride	CΓ	chloro
cyanide	NC⁻	cyano
hydroxide	HO⁻	hydroxo
oxide	O ²⁻	ОХО
water	H_2O	aqua
ammonia	NH ₃	ammine

- some ligands attach themselves using two or more lone pairs
- classified by the number of lone pairs they use, not the number they have
- multidentate and bidentate ligands lead to more stable complexes


Unidentate	form one co-ordinate bond	H_2O , NH_3 , CI^- and OH^-
Bidentate	form two co-ordinate bonds	$H_2NCH_2CH_2NH_2$, $C_2O_4^{2-}$
Multidentate	form several co-ordinate bonds	EDTA, Haem

Q.5 Draw structures for some bidentate and multidentate ligands

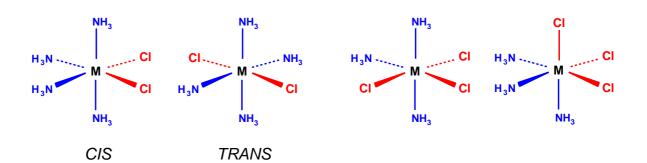
- SHAPES the shape is governed by the number of ligands around the central ion
 - shapes are based on electron pair repulsion theory
 - a change of ligand can affect the shape

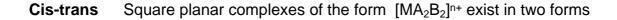
COORDINATION NUMBER

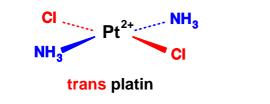
- the number of co-ordinate bonds formed to the central ion
- if monodentate ligands are present it will equal the number of ligands
- a change of ligand can affect the co-ordination number

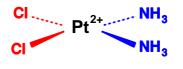
Q.6 What is the co-ordination number and shape of the following complex ions?

Coordination No.

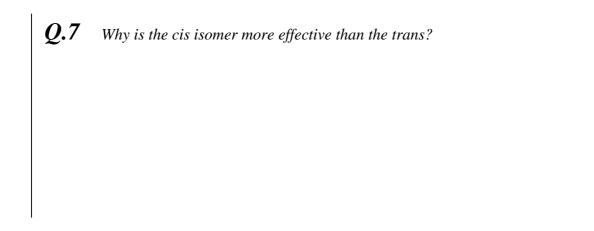

Shape

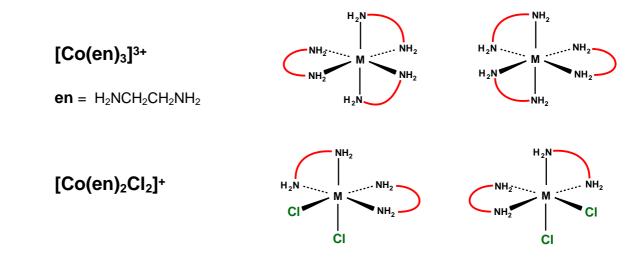

 $[Cr(H_2O)_6]^{3+}$ $[CuCl_4]^{2-}$ $[Co(H_2O)_6]^{2+}$ $[Cu(NH_3)_2]^{+}$ $[Al(OH)_6]^{3-}$


 $[Cu(NH_3)_4(H_2O)_2]^{2+}$


ISOMERISM IN COMPLEXES

Octahedral Some complexes; e.g $[MA_4B_2]^{n+}$ or $[MA_3B_3]^{n+}$ can exist in more than one form.





cis platin (ANTI CANCER DRUG)

Optical Octahedral complexes with bidentate ligands can exists as a pair of enantiomers (optical isomers). H₂NCH₂CH₂NH₂

10	F325 Transition Metals
CATALYSIS	 transition metals and their compounds show great catalytic activity partly filled d-orbitals can be used to form bonds with adsorbed reactants activity is due to their ability to exist in more than one oxidation state
Q.8	Give details of reactions where the following catalysts are used ?
	V_2O_5
	Fe
	Ni
	Pt/Rh

The first row transition elements

The examples aim to show typical properties of transition metals and their compounds.

- Variable oxidation states
- Formation of complex ions
- The importance of variable oxidation state in catalysis
- Definitions of Lewis Acids and Bases

One typical properties of transition elements is their ability to **form complex ions**. Complex ions consist of a **central metal ion surrounded by** co-ordinated ions or molecules known as **ligands**.

Ligand substitution can lead to changes in ...

- co-ordination number
- shape

• colour

• stability to oxidation or reduction

Reactions When investigating the reactions of selected transition metal ions, look for...

- substitution reactions of complex ions
- variation in oxidation state of transition metals
- the effect of ligands on co-ordination number and shape
- the increased acidity of M³⁺ over M²⁺ due to the increased charge density
- any difference in reactivity of M³⁺ and M²⁺ ions in reactions with OH⁻ and NH₃
- the reason why M³⁺ ions don't form carbonates
- amphoteric character in some metal hydroxides e.g. Al³⁺ and Cr³⁺
- the effect a ligand has on the stability of an oxidation state

Amphoteric

character Metal ions of 3+ charge have a high charge density and their hydroxides can dissolve in both acid and alkali.