CHEMICAL KINETICS (RATES OF REACTION)

Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the process.

Collision theory

- particles must COLLIDE before a reaction can take place
- not all collisions lead to a reaction
- reactants must possess a minimum amount of energy ACTIVATION ENERGY
- + particles must approach each other in a certain relative way STERIC EFFECT

Rate increase

to increase the rate one needs, according to collision theory, to have ...

more frequent collisions - increase particle speed or have more particles present

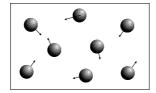
more successful collisions - give particles more energy or lower the activation energy

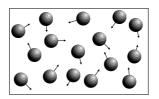
- increase surface area
- increase pressure (gaseous reactions only)
- increase concentration
- increase temperature
- use a light source (certain reactions only)
- add a catalyst

SURFACE AREA

- increasing surface area leads to more chances of a collision
- catalysts (in catalytic converters) are used in a finely divided form for this reason
- + in many organic reactions you have two liquid layers, one aqueous, the other non-aqueous. Shaking the mixture improves the rate as an emulsion is often formed and the area of boundary layers is increased and more collisions can take place.

Q.1 What is the surface area of a cube of side 1cm?


If you cut the cube in half, what is the new surface area?


CONCENTRATION

Introduction Increasing concentration = more frequent collisions = increased rate

LESS CONCENTRATED

SLOWER

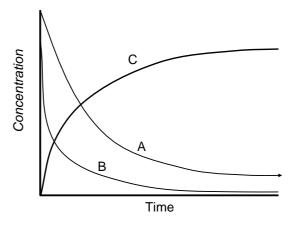
MORE CONCENTRATED

FASTER

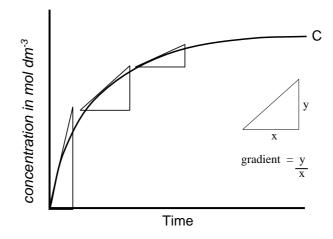
Increasing the concentration of some reactants can have a greater effect than increasing the concentration of other reactants.

Rate Reactions start off at their fastest then slow as the reactant concentration drops.

eg In the reaction A + 2B -> C the concentrations might change as shown


- the steeper the curve the faster the rate of the reaction
- reactions start off quickly because of the greater likelihood of collisions
- reactions slow down with time because there are fewer reactants to collide

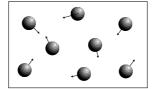
Reactants (A and B)

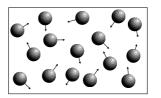

Concentration decreases with time

Products (C)

Concentration increases with time

- the rate of change of concentration is found from the slope or gradient
- the slope at the start of the reaction will give the INITIAL RATE
- the slope gets less (showing the rate is slowing down) as the reaction proceeds




PRESSURE • increasing the pressure makes gas particles get closer together

- this increases the frequency of collisions so the reaction rate increases
- many industrial processes occur at high pressure to increase the rate but it also can affect the position of equilibrium - see Chemical Equilibrium

LOW PRESSURE

SLOWER

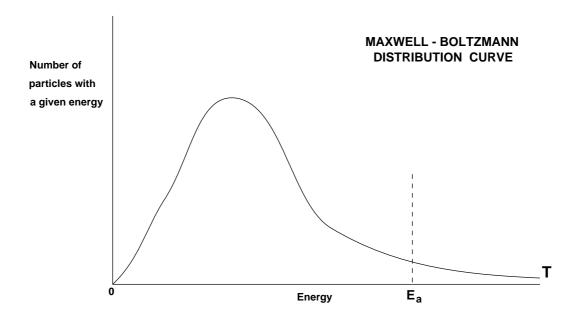
HIGH PRESSURE

FASTER

The greater the pressure, the more frequent the collisions

TEMPERATURE

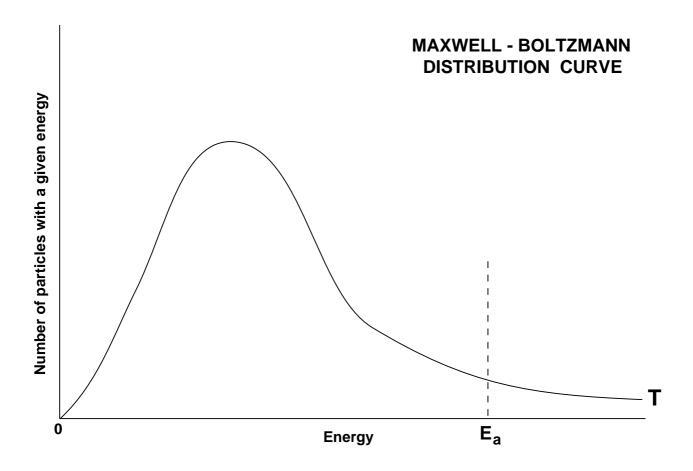
Effect


increasing the temperature increases the rate of a reaction

- particles get more energy so they can overcome the energy barrier
- particle speeds increase so collisions are more frequent

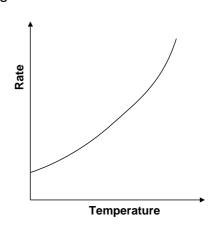
Distribution of molecular velocities and energies

Introduction Because of the many collisions taking place, there is a **spread of molecular velocities and energies**. Experiments indicated that ...


- · no particles have zero velocity
- some have very low and some have very high velocities
- · most have intermediate velocities.

Significance E_a corresponds to the **Activation Energy**. The area under the curve beyond this value is proportional to the number of particles with energy greater than E_a

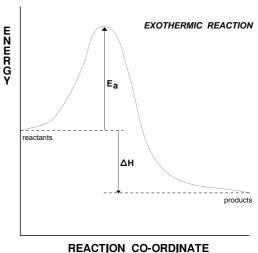
Increasing the temperature alters the distribution;


- get a shift to higher energies/velocities
- curve gets broader and flatter due to the greater spread of values
- area under the curve stays constant- corresponds to the total no. of particles

Superimpose the curves you get at a higher (T_2) and a lower (T_1) temperature.

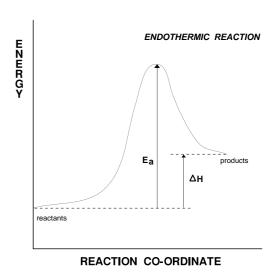
- Explanation increasing the temperature gives more particles with energy greater than Ea
 - more reactants can overcome the energy barrier associated and form products
 - a small rise in temperature can lead to a large increase in rate

The Effect of Temperature on the Rate of a Reaction


5

Energy Profiles

During a reaction the energy of the system rises to a maximum, then falls There are two possibilities.


- energy falls below the original value
- · overall release of energy

EXOTHERMIC REACTION

- energy rises above the original
- overall absorption of energy

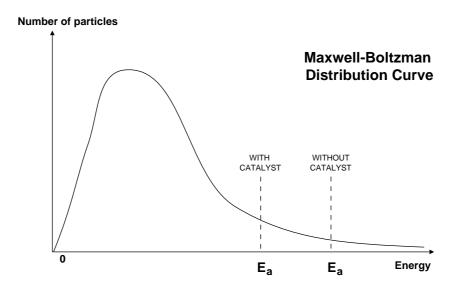
ENDOTHERMIC REACTION

LIGHT

- shining a suitable light source onto some reactants increases the rate of reaction
- the light often U.V. provides energy to break bonds and initiate a reaction
- the greater the intensity of the light, the greater the effect

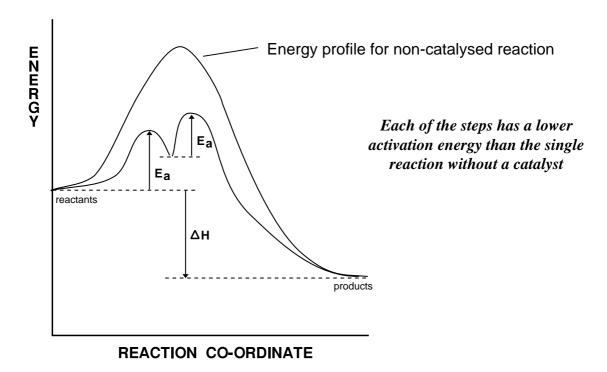
Examples

- the reaction between methane and chlorine see organic notes on alkanes
- the reaction between hydrogen and chlorine


Equation
$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

Bond enthalpies $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$
 $Cl_2 \longrightarrow 2Cl - Cl_2 \longrightarrow Initiation$
 $Cl_2 \longrightarrow HCl + H - Il_2 \longrightarrow HCl + Cl_2 \longrightarrow HCl \longrightarrow H_2$
 $Cl_2 \longrightarrow HCl + Cl_2 \longrightarrow HCl + Cl_2 \longrightarrow HCl \longrightarrow HCl$

CATALYSTS


Operation • provide an alternative reaction pathway with a lower Activation Energy

F322

Lowering E_a results in there being a greater area under the curve showing that more molecules have energies in excess of the Activation Energy

- decreasing the Activation Energy means that more particles will have sufficient energy to overcome the energy barrier and react
- using catalysts avoids the need to supply extra heat safer and cheaper
- catalysts **remain chemically unchanged at the end** of the reaction.

Uses

- widely used in industry where an increase in temperature would result in a lower yield due to a shift in equilibrium (e.g. Haber and Contact Processes)
- CATALYSTS DO NOT AFFECT THE POSITION OF ANY EQUILIBRIUM but they do affect the rate at which equilibrium is attained.
- a lot is spent on research into more effective catalysts savings can be dramatic
- catalysts need to be changed regularly as they get 'poisoned' by other chemicals
- catalysts are used in a finely divided state to increase the surface area

Catalysts...

allow reactions to take place at lower temperatures
 SAVE ENERGY

REDUCE CO₂ OUTPUT

enable different reactions to be used

BETTER ATOM ECONOMY

REDUCE WASTE

are often enzymes

GENERATE SPECIFIC PRODUCTS

OPERATE EFFECTIVELY AT ROOM TEMPERATURES

have great economic importance in industry

POLY(ETHENE)

SULPHURIC ACID

AMMONIA

ETHANOL PRODUCTION

can reduce pollution

CATALYTIC CONVERTERS IN CARS

HETEROGENEOUS CATALYSIS

Catalyst is in a different phase to the reactants

e.g. a solid catalyst in a gaseous reaction

Action

- takes place at active sites on the surface of a solid
- gases are adsorbed onto the surface
- form weak bonds between gas and metal atoms

Catalysis is thought to work in three stages as follows ...

Adsorption • formation of bonds with surface weakens bonds in gas molecules makes a subsequent reaction easier

Reaction

 adsorbed gases may be held on the surface increases chances of favourable collisions

Desorption • the products are then released from the active sites

HARD Hetero = Adsorption + Reaction + Desorption

The strength of adsorption is critical ...

Too weak little adsorption - molecules will not bond to surface

Too strong molecules are held tightly and remain on the surface

thus blocking reactive sites and preventing further reaction

reactants are attracted yet products can leave to open up active sites Just right

Rate

Catalysis of gaseous reactions can lead to an increase in rate in several ways ...

- one species is adsorbed onto the surface so is more likely to undergo a collision
- one species is held in a favourable position for reaction to occur
- adsorption onto the surface allows bonds to break and fragments react quicker
- two reactants are adsorbed alongside each other give a greater concentration

Format

• used in a finely divided form increases the surface area provides more collision sites.

• mounted in a **support** medium maximises surface area to reduce costs

Examples hydrogenation reactions Metals Ni, Pt Fe **Haber Process**

> Al_2O_3 dehydration reactions Oxides

> > V_2O_5 **Contact Process**

HOMOGENEOUS CATALYSIS

Catalyst and reactants are in the same phase

- reaction proceeds through an intermediate species with lower energy
- there is usually more than one reaction step
- transition metal ions often involved oxidation state changes during reaction

Examples

Acids

e.g. hydrolysis of esters

Gases

OZONE in the atmosphere breaks down naturally as follows ...

$$O_3 \longrightarrow O_4 + O_2$$

It breaks down more easily in the presence of chlorofluorcarbons (CFC's).

There is a series of complex reactions but the basic process is :-

 CFC's break down in the presence of UV light to form chlorine radicals

$$CCI_2F_2$$
 -> CI^{\bullet} + $^{\bullet}CCIF_2$

chlorine radicals then react with ozone

$$O_3$$
 + CI^{\bullet} -> CIO^{\bullet} + O_2

chlorine radicals are regenerated

$$CIO + O \longrightarrow O_2 + CI +$$

Overall, chlorine radicals are not used up so a small amount of CFC's can destroy thousands of ozone molecules before the termination stage