GROUP II ELEMENTS Beryllium to Barium

Introduction Elements in Group I (alkali metals) and Group II (alkaline earths) are known as **s-block elements** because their valence (bonding) electrons are in s orbitals.

	Be	Mg	Ca	Sr	Ba
Atomic Number	4	12	20	38	56
Electronic configuration	1s ² 2s ²	[Ne] 3s ²	[Ar] 4s ²	[Kr] 5s ²	[Xe] 6s ²

TRENDS

Atomic Radius Increases down each group electrons are in shells further from the nucleus

	Be	Mg	Ca	Sr	Ba
Atomic radius / nm	0.106	0.140	0.174	0.191	0.198

Ionic Size Increases down the group

The size of positive ions is less than the original atom because the nuclear charge exceeds the electronic charge.

	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
Ionic radius / nm	0.030	0.064	0.094	0.110	0.134

Melting PointsDecrease down each groupmetallic bonding gets weaker due to increased sizeEach atom contributes two electrons to the delocalised cloud. Melting points tend
not to give a decent trend as different crystalline structures affect the melting point.

	Be	Mg	Ca	Sr	Ba
Melting point / °C	1283	650	850	770	710

Ionisation Energy Decreases down the group atomic size increases

Values for Group I are low because the electron has just gone into a new level and is shielded by filled inner levels. This makes them reactive. Group II elements have higher values than their Group I equivalents due to the increased nuclear charge.

	Be	Mg	Ca	Sr	Ba
Ist I.E. / kJ mol ⁻¹	899	738	590	550	500
2nd I.E. / kJ mol ⁻¹	1800	1500	1100	1100	1000
3rd I.E. / kJ mol ⁻¹	14849	7733	4912	4120	3390

There is a large increase for the 3rd I.E. as the electron is now being removed from a shell nearer the nucleus and there is less shielding.

2 -

CHEMICAL PROPERTIES OF THE ELEMENTS

Overall Reactivity increases down the Group due to the ease of cation formation

Oxygen • react with increasing vigour down the group

Mg	burns readily with a bright white flame 0 0 +2 -2 2Mg (s) + O ₂ (g)> 2MgO (s)
Ва	burns readily with an apple-green flame 2Ba (s) + O ₂ (g)> 2BaO (s)
In both cases	metal is oxidisedOxidation No. increases from 0 to +2oxygen is reducedOxidation No. decreases from 0 to -2
(Mg ——> Mg²+ + 2e [−] O + 2e [−] ——> O²-

Water• react with increasing vigour down the groupMgreacts very slowly with cold water
 $Mg(s) + 2H_2O(l) \longrightarrow Mg(OH)_2(aq) + H_2(g)$
but reacts quickly with steam
 $Mg(s) + H_2O(g) \longrightarrow MgO(s) + H_2(g)$ Bareact with vigourously with cold water
 $Ba(s) + 2H_2O(l) \longrightarrow Ba(OH)_2(aq) + H_2(g)$

OXIDES OF GROUP II ELEMENTS

•

Properties • ionic solids; EXC. beryllium oxide which has covalent character

BeOberyllium oxideMgOmagnesium oxideCaOcalcium oxideSrOstrontium oxideBaObarium oxide

F321

Reaction with water

Most Group II oxides react with water to produce the hydroxide

e.g. $CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(s)$

	BeO	MgO	CaO	SrO	BaO
Reactivity with water	NONE	reacts	reacts	reacts	reacts
Solubility of hydroxide g/100cm ³ of water	insoluble	sparingly	slightly	quite	very
pH of solution	-		9-10		

Hydroxides • basic strength also increases down group

- this is because the solubility increases
- the metal ions get larger so charge density decreases
- there is a lower attraction between the OH⁻ ions and larger dipositive ions
- the ions will split away from each other more easily
- there will be a greater concentration of OH^- ions in water

Uses of hydroxides	Ca(OH) ₂	 used in agriculture to neutralise acid soils Ca(OH)₂(s) + 2H⁺ (aq) -> Ca²⁺(aq) + 2H₂O(I)
	Mg(OH)₂	 used in toothpaste and indigestion tablets as an antacid

- $Mg(OH)_{2}(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + 2H_{2}O(l)$
- both the above are weak alkalis and not as caustic as sodium hydroxide

CARBONATES

- Properties insoluble in water
 - undergo thermal decomposition to oxide and carbon dioxide

e.g. $MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$

· ease of decomposition decreases down the group

	MgCO ₃	CaCO ₃	SrCO ₃	BaCO ₃
Solubility (g/100cm ³ of water)	1.5 x 10 ⁻⁴	1.3 x 10 ⁻⁵	7.4 x 10 ⁻⁶	9.1 x 10 ⁻⁶
Decomposition temperature / °C	400	980	1280	1360

3