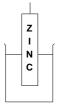

ELECTROCHEMISTRY

REDOX	Reduction	gain of electrons	Cu ²⁺ (aq) + 2e ⁻ > Cu(s)
	Oxidation	removal of electrons	Zn (s)> Zn²⁺ (aq) + 2e ⁻


HALF CELLS these are systems involving oxidation or reduction

• there are several types

METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

Reaction	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$
Electrode	copper
Solution	Cu ²⁺ (aq) (1M) - 1M copper sulphate solution
Potential	+ 0.34V

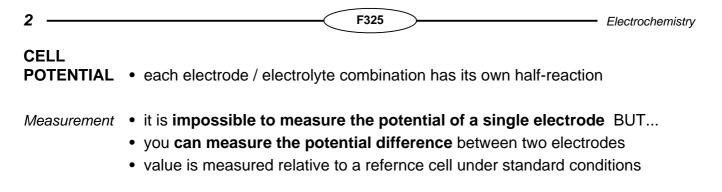
Reaction	Zn²⁺ (aq) + 2e ⁻ = Zn (s)
Electrode	zinc
Solution	Zn²⁺ (aq) (1M) - 1M zinc sulphate solution
Potential	- 0.76V

GASES IN CONTACT WITH SOLUTIONS OF THEIR IONS

Reaction	2H⁺(aq) + 2e [−]
Electrode	platinum - you need a metal to get electrons in and out
Solution	H+(aq) (1M) - 1M hydrochloric acid or 0.5M sulphuric
Gas	hydrogen at 100kPa (1 atm) pressure
Potential	0.00V
IMPORTANO	CE This half cell is known as THE STANDARD
	HYDROGEN ELECTRODE

SOLUTIONS OF IONS IN TWO DIFFERENT OXIDATION STATES

_		
	P L A T I N U M	

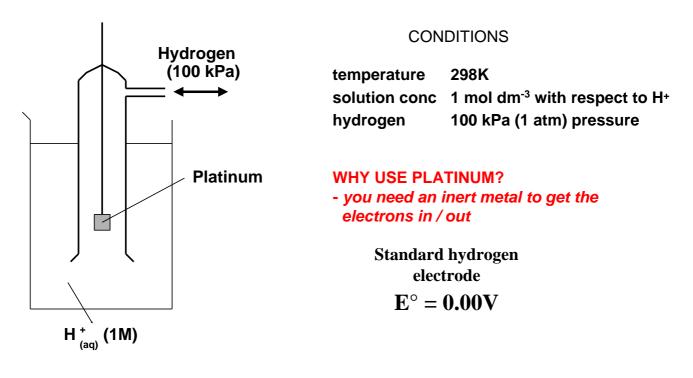

PLATINUM

 $Fe^{3+}(aq) + e^{-} = Fe^{2+}(aq)$ Reaction Electrode platinum - you need a metal to get electrons in and out Fe³⁺(aq) (1M) and Fe²⁺(aq) (1M) Solution Potential + 0.77 V

SOLUTIONS OF OXIDISING AGENTS IN ACID SOLUTION

Reaction	$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \implies Mn^{2+}(aq) + 4H_2O(l)$
Electrode	platinum - you need a metal to get electrons in and out
Solution	MnO ₄ -(aq) (1M) and Mn ²⁺ (aq) (1M) and H ⁺ (aq)
Potential	+ 1.52 V

1

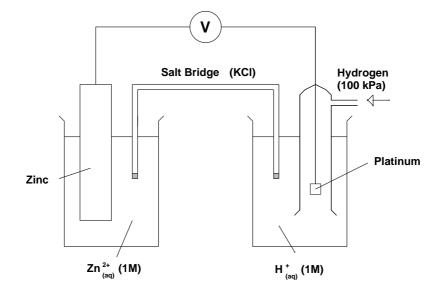

STANDARD ELECTRODE POTENTIAL

The potential difference of a cell when the electrode is connected to the standard hydrogen electrode under standard conditions

The value is affected by ... • temperature

- pressure of any gases
 - solution concentration

The ultimate reference is the STANDARD HYDROGEN ELECTRODE.


However, as it is difficult to set up, secondary standards are used.

Secondary

- **standards** The standard hydrogen electrode (SHE) is hard to set up so it is easier to use a more convenient secondary standard which has been calibrated against the SHE.
- $Calomel \qquad \bullet \ the \ \textbf{calomel} \ \textbf{electrode} \ contains \ Hg_2CI_2$
 - it has a standard electrode potential of +0.27V
 - is used as the left hand electrode to determine the potential of an unknown
 - to obtain the E° value of the unknown cell ADD 0.27V to the measured potential

Experimental determination of E°

In the diagram below the standard hydrogen electrode is shown coupled up to a zinc half cell. The voltmeter reading gives the standard electrode potential of the zinc cell.

salt bridge • filled with saturated potassium chloride solution

· enables the circuit to be completed

THE ELECTROCHEMICAL SERIES

Layout Species are arranged in order of their standard electrode potentials to get a series that tells us how good a species is (as an oxidising agent) at picking up electrons.

All equations are written as reduction processes ... i.e. gaining electrons

e.g.	Al ³⁺ _(aq) + 3e ⁻		$Al_{(s)}$	$E^{\circ} = -1.66V$
	$Cl_{2(g)} + 2e^{-}$	<u> </u>	2 <i>Cl</i> ⁻ _(aq)	$E^\circ = +1.36V$

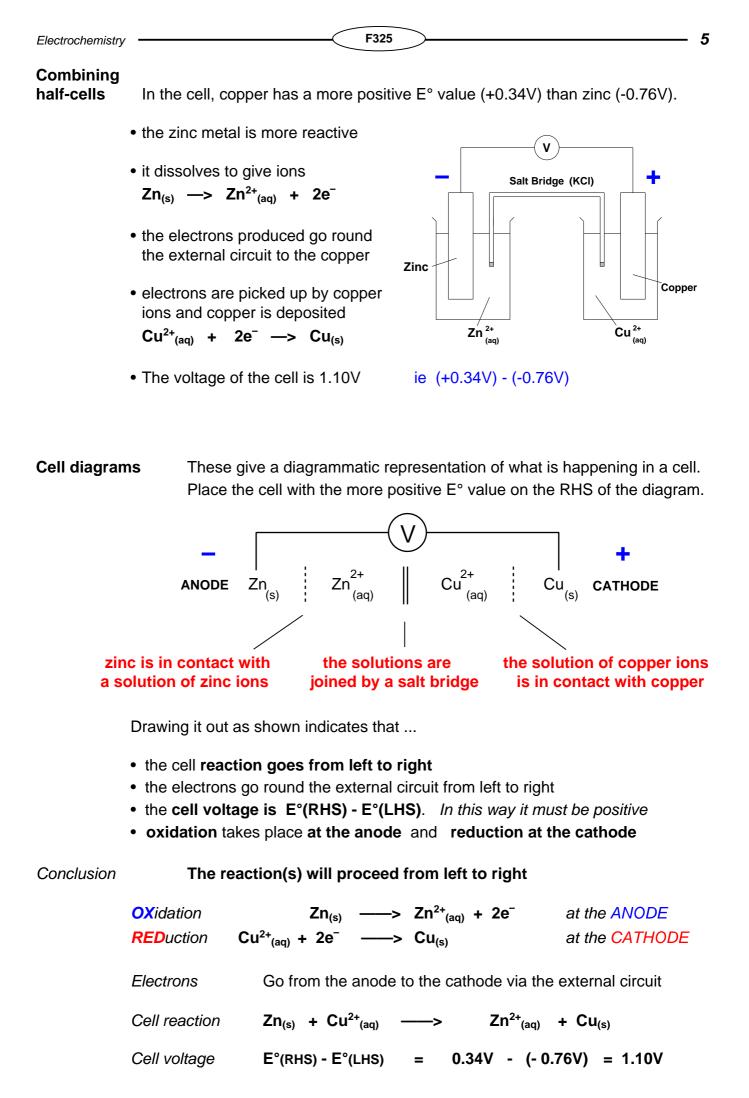
The species with the more positive potential (E° value) will oxidise one (i.e. reverse the equation) with a lower E° value.

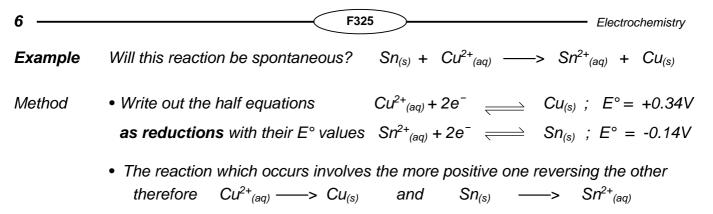
Example What will happen if an $Sn_{(s)}/Sn^{2+}_{(aq)}$ cell and a $Cu_{(s)}Cu^{2+}_{(aq)}$ cell are connected?

- Write out the appropriate equations $Cu^{2+}_{(aq)} + 2e^{-} \iff Cu_{(s)}$; $E^{\circ} = +0.34V$ $Sn^{2+}_{(aq)} + 2e^{-} \iff Sn_{(s)}$; $E^{\circ} = -0.14V$
- the half reaction with the more positive E° value is more likely to work
- it gets the electrons by reversing the half reaction with the lower E° value
- therefore $Cu^{2+}_{(aq)} \longrightarrow Cu_{(s)}$ and $Sn_{(s)} \longrightarrow Sn^{2+}_{(aq)}$
- the overall reaction is $Cu^{2+}_{(aq)} + Sn_{(s)} \longrightarrow Sn^{2+}_{(aq)} + Cu_{(s)}$
- the cell voltage is the difference in E° values ... (+0.34) (-0.14) = + 0.48V

3

THE ELECTROCHEMICAL SERIES


			\mathbf{E}° / \mathbf{V}	
$F_{2(g)} + 2e^{-}$	<u> </u>	2F ⁻ (aq	+2.87	
$H_2O_{2(aq)} + 2H^+_{(aq)} + 2e^-$	<u> </u>	$2H_2O_{(l)}$	+1.77	T
$MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 5e^{-}$	<u> </u>	$Mn^{2+}{}_{(aq)}+4H_2O_{(l)} \\$	+1.52	
$PbO_{2(s)} + 4H^{+}_{(aq)} + 2e^{-}$	<u> </u>	$Pb^{2+}_{(aq)} + 2H_2O_{(l)}$	+1.47	reaction is more
$Ce^{4+}{}_{(aq)} + e^{-}$		Ce ³⁺ (aq)	+1.45	likely to go right
$Cl_{2(g)} + 2e^{-}$	$ \longrightarrow$	2Cl ⁻ _(aq)	+1.36	
$Cr_2O_7^{2-}_{(aq)} + I4H^+_{(aq)} + 6e^-$	$ \longrightarrow$	$2Cr^{3+}_{(aq)} + 7H_2O_{(l)}$	+1.33	LH species better
$MnO_{2(s)} + 4H^{+}_{(aq)} + 2e^{-}$		$Mn^{2+}{}_{(aq)} \ + \ 2H_2O_{(l)}$	+1.23	oxidising agents
$Br_{2(l)} + 2e^{-}$	$ \longrightarrow$	2Br ⁻ _(aq)	+1.07	
$Ag^{+}_{(aq)} + e^{-}$		$Ag_{(s)}$	+0.80	RH species weaker reducing agents
$Fe^{3+}_{(aq)} + e^{-}$	<u> </u>	Fe ²⁺ (aq)	+0.77	5.5
$O_{2(g)} + 2H^{+}_{(aq)} + 2e^{-}$		$H_2O_{2(l)}$	+0.68	RH species are
$I_{2(s)} + 2e^{-}$		21 ⁻ (aq)	+0.54	harder to oxidise
$Cu^+_{(aq)} + e^-$		Cu _(s)	+0.52	
$Cu^{2+}_{(aq)} + 2e^{-}$		Cu _(s)	+0.34	LH species are
$Cu^{2+}_{(aq)} + e^{-}$		Cu ⁺ _(aq)	+0.15	easier to reduce
${\rm Sn}^{4+}{}_{(aq)} + 2e^{-}$	<u> </u>	Sn ²⁺ (aq)	+0.15	
2H⁺ _(aq) + 2e [−]		H _{2(g)}	0.00	
$Pb^{2+}_{(aq)} + 2e^{-}$		Pb _(s)	-0.13	
${\rm Sn}^{2+}{}_{(aq)} + 2e^{-}$		Sn _(s)	-0.14	
$Ni^{2+}_{(aq)} + 2e^{-}$		Ni _(s)	-0.25	reactivity of metals decreases
$Cr^{3+}_{(aq)} + e^{-}$		Cr ²⁺ _(aq)	-0.41	
$Fe^{2+}_{(aq)} + 2e^{-}$		Fe _(s)	-0.44	reactivity of
$Zn^{2+}{}_{(aq)} + 2e^{-}$		Zn _(s)	-0.76	non-metals increases
$Al^{3+}_{(aq)} + 3e^{-}$		$Al_{(s)}$	-1.66	I
$Mg^{2+}_{(aq)} + 2e^{-}$		$Mg_{(s)}$	-2.38	
$Na^+_{(aq)} + e^-$		Na _(s)	-2.71	
$Ca^{2+}_{(aq)} + 2e^{-}$		Ca _(s)	-2.87	
$K^+_{(aq)} + e^-$	$\overline{\overline{}}$	K _(s)	-2.92	


Interpretation	F2 is the best oxidising agent	- highest E° value; most feasible reaction
	K ⁺ is the worst oxidising agent	- lowest E° value; least feasible reaction
	K is the best reducing agent	- most feasible reverse reaction

Use of E° • used to predict the feasibility (likelihood) of redox and cell reactions

- in theory ANY REDOX REACTION WITH A POSITIVE E° VALUE WILL WORK
- in practice, it will proceed if the E° value is greater than + 0.40V

An equation with a more positive E° value will reverse a less positive one.

- If this is the equation you want (which it is) then it will be spontaneous
- The cell voltage is the difference in E° values... (+0.34V) (-0.14V) = + 0.48V

NOTE: DOUBLING AN EQUATION DOES NOT DOUBLE THE E° VALUE

1/2Cl _{2(g)}	+ e [−]	 CI [−] _(aq)	E° = +1.36V
Cl _{2(g)}	+ 2e⁻	 2CI [−] _(aq)	E° = +1.36V

Q.1 Which of the following reactions occur spontaneously ?

• $Fe_{(s)}$ + $Zn^{2+}_{(aq)}$	>	$Fe^{2+}_{(aq)}$ + $Zn_{(s)}$
• $Sn^{4+}_{(aq)}$ + $2Fe^{2+}_{(aq)}$	>	$2Fe^{3+}_{(aq)} + Sn^{2+}_{(aq)}$
• $Sn^{4+}_{(aq)}$ + $2I^{-}_{(aq)}$	>	$I_{2(s)}$ + $Sn^{2+}_{(aq)}$
• $Cl_{2(g)}$ + $2Br_{(aq)}$	>	$Br_{2(g)}$ + $2Cl_{(aq)}$
• $I_{2(g)}$ + $2Br_{(aq)}$	>	$Br_{2(g)}$ + $2I^{-}_{(aq)}$
• $2H^{+}_{(aq)}$ + $Zn_{(s)}$	>	$H_{2(s)} + Zn^{2+}_{(aq)}$

For those that work, calculate the cell voltage.

IMPORTANT WARNING

Limitation of using E° to predict the feasibility of a reaction

- KineticStandard electrode potentials are not always accurate in their predictions.
They indicate if a reaction is possible but cannot say what the rate will be.
Some reactions will not be effective as they are too slow.
- **Conditions** Because **TEMPERATURE** and **CONCENTRATION** affect the value of a standard electrode potential any variation can also affect the probability of a reaction taking place. Concentrations do change during a reaction.

Apply le Chatelier's principle to predict the change in E°

Q.2 Explain what reactions, if any, will occur if aqueous solutions of KCl, KBr and KI are treated with; a) acidified $KMnO_4$ b) acidified $K_2Cr_2O_7$.

Q.3 Using E° values, explain why zinc reacts with dilute acids to produce hydrogen gas but silver doesn't

.Q.4 Construct a cell diagram for a cell made up from Ni²⁺/Ni and Zn²⁺/Zn. Work out the overall reaction and calculate the potential difference of the cell.

Q.5 Why is hydrochloric acid not used to acidify potassium manganate(VII)?

Q.6 Explain why the chemistry of copper(I) in aqueous solution is limited. The following half equations will help. Name the overall process which takes place.

 $\begin{array}{ccc} Cu^{+}{}_{(aq)}+e^{-} & & & \\ \hline Cu^{2+}{}_{(aq)}+e^{-} & & & \\ \hline Cu^{+}{}_{(aq)} & & E^{\circ}= \ + \ 0.15V \end{array}$