

- *Aromatic* in aromatic alcohols, the OH must be **attached directly to a benzene ring**
 - an OH on a side chain of a benzene ring behaves as a typical aliphatic alcohol.

Structures • alcohols are classified according to the environment of the OH functional group

• chemical behaviour, especially with oxidation, often depends on the structure

Physical properties

Boiling point Increases with molecular size due to increased van der Waals' forces. Alcohols have **higher boiling points** than similar molecular mass alkanes due to the added presence of **inter-molecular hydrogen bonding**. More energy is required to separate the molecules.

		M_r	bp / °C
ethanol	C ₂ H ₅ OH	46	+78
propane	C_3H_8	44	-42

intermolecular hydrogen bonding in alcohols

Boiling point also increases for "straight" chain isomers. Greater branching = lower inter-molecular forces.

		bp / °C
butan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ OH	118
butan-2-ol	CH ₃ CH ₂ CH(OH)CH ₃	100
2-methylpropan-2-ol	(CH ₃) ₃ COH	83

Solubility Low molecular mass alcohols are **miscible with water** due to **hydrogen bonding** between the two molecules.

intermolecular hydrogen bonding with water

Alcohols are themselves very good solvents, being able to dissolve a large number of organic molecules.

Al	со	ho	ls

PREPARATION OF ALCOHOLS

F322

Laboratory	from haloalkanfrom aldehydesfrom alkenes	 es - reflux with aqueous sodium or potassium hydroxide. - reduction with sodium tetrahydridoborate(III) - NaBH₄. - acid catalysed hydration using conc. sulphuric acid.
Industrial	Fermentation	
	Reagent(s)	GLUCOSE - from hydrolysis of starch
	Conditions	yeast warm but no higher than 37°C
	Equation	$C_6H_{12}O_6 \longrightarrow 2 C_2H_5OH + 2 CO_2$

Direct hydration

Reagent(s)	ETHENE - from cracking of fractions from distilled crude oil
Conditions	catalyst - phosphoric acidhigh temperature and pressure
Equation	C_2H_4 + H_2O \implies C_2H_5OH

Q.2 List some advantages and disadvantages of the two major industrial methods.

Fermentation advantage(s)

disadvantage(s)

Hydration advantage(s)

disadvantage(s)

Uses ethanol

- *methanol* fuel, **added to petrol** to improve combustion properties
 - solvent
 - a feedstock for important industrial processes

2.

Alcohols -

F322

CHEMICAL PROPERTIES

General Lone pairs on the oxygen atom makes alcohols Lewis Bases (lone pair donors). They can use a lone pair to • pick up protons

• behave as nucleophiles.

Elimination Reagent conc. sulphuric acid (H_2SO_4) or conc. phosphoric acid (H_3PO_4) reflux 180°C Conditions Product alkene Equation e.g. $C_2H_5OH(I)$ -----> $CH_2 = CH_2(g) + H_2O(I)$

Mechanism

 $\longrightarrow H_{2}O + H - C + H + H^{+}C = C + H^{+}H^{+}$ H-Ċ-H Ĥ. н Ĥ.

- Step 1 protonation of the alcohol using a lone pair on oxygen
- Step 2 loss of a water molecule to generate a carbocation
- loss of a proton (H⁺) to give the alkene Step 3
- Note 1 There must be a hydrogen atom on a carbon atom adjacent the carbon with the OH on it
- Note 2 Alcohols with the OH in the middle of a chain have two ways of losing water. In Step 3 of the mechanism, a proton can be lost from either side of the carbocation. This can give a mixture of alkenes from unsymmetrical alcohols

Elimination

Method 2 Conditions Pass vapour over a heated catalyst of pumice or aluminium oxide

Q.3Butan-2-ol reacts with concentrated sulphuric acid to give **THREE** isomeric alkenes. What are they and how are they formed?

3

Oxidation of Alcohols

F322

Provides a way of differentiating between primary, secondary and tertiary alcohols. Reagents include acidified potassium dichromate(VI) or potassium manganate(VII)

Primary Easily oxidised to aldehydes and then to carboxylic acids.

4.

e.g. $CH_3CH_2OH(I) + [O] \longrightarrow CH_3CHO(I) + H_2O(I)$ then $CH_3CHO(I) + [O] \longrightarrow CH_3COOH(I)$

- it is essential to distil off the aldehyde before it gets oxidised to the acid
- the alcohol is dripped into a warm solution of acidified K₂Cr₂O₇
- the aldehyde has a low boiling point no hydrogen bonding it distils off
- if it didn't distil off it would be oxidised to the equivalent carboxylic acid
- to oxidise an alcohol straight to the acid you would reflux the mixture

compound	formula	intermolecular bonding	boiling point
ETHANOL	C ₂ H ₅ OH	HYDROGEN BONDING	78°C
ETHANAL	CH ₃ CHO	DIPOLE-DIPOLE	23°C
ETHANOIC ACID	CH ₃ COOH	HYDROGEN BONDING	118°C

Secondary Easily oxidised to ketones

e.g. $CH_3CHOHCH_3(I) + [O] \longrightarrow CH_3COCH_3(I) + H_2O(I)$

N.B. On prolonged treatment with a powerful oxidising agent they can be further oxidised to a mixture of acids with fewer carbon atoms than the original alcohol.

Alcohols	F322 5
Combustion	Alcohols make useful fuels
	$e.g. C_2H_5OH(I) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(I)$
	 have high enthalpies of combustion do not contain sulphur so there is less pollution can be obtained from renewable resources
Esterification	$\begin{array}{llllllllllllllllllllllllllllllllllll$
, I I	An advantage of concentrated H_2SO_4 is that it is also a dehydrating agent and removes water as it is formed causing the equilibrium to move to the right and thus increasing the yield of ester.
Q.4	Name these esters; $HCOOC_2H_5$
	$CH_{3}COOCH_{3}$
	$CH_3CH_2COOCH_3$
(Complete the equations;
	+ \longrightarrow $HCOOC_2H_5$ + H_2O
	+ $\leftarrow CH_3COOCH_3 + H_2O$
	+ $ \longrightarrow CH_3CH_2COOCH_3 + H_2O $
	$CH_3CH_2CH_2OH + CH_3CH_2COOH \implies +$

IDENTIFYING ALCOHOLS USING INFRA RED SPECTROSCOPY

BOND	COMPOUND	ABSORBANCE	RANGE
O-H	alcohols	broad	3200 cm^{-1} to 3600 cm^{-1}
O-H	carboxylic acids	medium to broad	2500 cm ⁻¹ to 3500 cm ⁻¹
C=0	ketones, aldehydes esters and acids	strong and sharp	1600 cm ⁻¹ to 1750 cm ⁻¹
Differentiation	Compound ALCOHOL ALDEHYDE / KETON CARBOXYLIC ACID ESTER	O-H YES NO YES NO	C=O NO YES YES YES

O-H absorption

ALDEHYDE

C=O absorption

CARBOXYLIC ACID

O-H absorption C=O absorption

6.

F322

INDUSTRIAL PREPARATION OF ETHANOL - SUMMARY

 $2 C_2 H_5 OH + 2 CO_2$

FERMENTATION

Reagent(s) GLUCOSE - from hydrolysis of starch

Conditions yeast warm but no higher than 37°C

C₆H₁₂O₆

Equation

Х

• LOW ENERGY PROCESS

——>

- USES RENEWABLE RESOURCES PLANTS
- SIMPLE EQUIPMENT
- SLOW
- PRODUCES IMPURE ETHANOL
 - BATCH PROCESS

HYDRATION OF ETHENE

Reagent(s)	ETHENE - from cracking of fractions from distilled crude oil
Conditions	catalyst - phosphoric acid high temperature and pressure
Equation	$C_2H_4 + H_2O \longrightarrow C_2H_5OH$
~	 FAST PURE ETHANOL PRODUCED CONTINUOUS PROCESS
×	 HIGH ENERGY PROCESS EXPENSIVE PLANT REQUIRED USES NON-RENEWABLE FOSSIL FUELS TO MAKE ETHENE

USES	•	ALCOHOLIC DRINKS
	•	SOLVENT - industrial alcohol / methylated spirits (methanol is added)
	•	FUEL - used as a petrol substitute in countries with limited oil reserves