OXIDATION STATES

Used to

- tell if oxidation or reduction has taken place
- · work out what has been oxidised and/or reduced
- construct half equations and balance redox equations

Atoms / simple ions

The number of electrons which must be added or removed to become neutral

atoms Na in Na = 0 neutral already ... no need to add any electrons cations Na in Na⁺ = +1 need to add 1 electron to make Na⁺ neutral anions CI in CI⁻ = -1 need to take 1 electron away to make CI⁻ neutral

Q.1 What is the oxidation state of the elements in ?

a) N b) Fe^{3+} c) S^{2-} d) Cue) Cu^{2+} f) Cu^{+}

Molecules Sum of oxidation states adds up to zero

Elements $H \text{ in } H_2 = 0$

Compounds C in CO_2 = +4 and O = -2 [i.e. +4 and 2(-2) = 0]

- CO₂ is neutral, so the sum of the oxidation states must be zero
- one element must have a positive OS, the other must be negative
- the more electronegative species will have the negative value
- electronegativity increases across a period and decreases down a group
- O is further to the right in the periodic table so it has the negative value (-2)
- C is to the left so it has the positive value (+4)
- one needs two O's at -2 each to balance one C at +4

Complex ions

Sum of oxidation states adds up to the charge on the ion

in SO_4^{2-} S = +6, O = -2 [i.e. +6 + 4(-2) = -2]; therefore the ion has a 2- charge

Example

What is the oxidation state (O.S.) of Mn in MnO_4^- ?

- the O.S. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.S. $\dot{s} = -8$
- the overall charge on the ion is -1, :. the sum of all the O.S.'s must add up to -1
- the O.S. of Mn plus the sum of the O.S.'s of the four O's must equal -1
- therefore the O.S. of Manganese in $MnO_4^- = +7$

WHICH OXIDATION STATE?

- elements can exist in more than one oxidation state
- certain elements can be used as benchmarks

HYDROGEN	(+1)	except	0 -1	atom (H) and molecule (H_2) hydride ion, H^- [in sodium hydride, NaH]
OXYGEN	(-2)	except	0 -1 +2	atom (O) and molecule (O ₂) in hydrogen peroxide, H ₂ O ₂ in F ₂ O
FLUORINE	(-1)	except	0	atom (F) and molecule (F ₂)

Metals

- have positive values in compounds
- value is usually that of the Group Number Al is +3
- values can go go no higher than the Group No. Mn can be +2,+4,+6,+7

Non metals

- mostly negative based on their usual ion Cl is usually -1
- can have values up to their Group No. Cl can be +1, +3, +5, +7
- to avoid ambiguity, the oxidation state is often included in the name of a species
 - e.g. manganese(IV) oxide shows Mn is in the +4 oxidation state in MnO₂ sulphur(VI) oxide for SO₃ dichromate(VI) for $Cr_2O_7^{2-}$ phosphorus(V) chloride for PCl_5 .

Q.2	What is t	he theoretic	cal maximun	n oxidation s	state of the	following elei	ments ?
	Na	P	Ва	Pb	s	Mn	Cr
	What will	l be the usu	ıal and maxiı	mum oxidati	on state in (compounds o	of ?
	What will	l be the usu Li	ıal and maxiı Br	mum oxidati Sr	on state in o	compounds o	of ? N
	What will				_	•	

0.3Give the oxidation state of the element other than O,H or F in

> SO₂ NH_3 NO₂ NH₄+ IF₇ CI2O7 MnO_4^{2-} SO₃²⁻ $S_2O_3^{2-}$ S4O62- $NO_3^ NO_2^-$

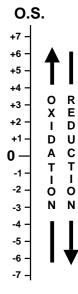
What is odd about the value of the oxidation state of S in $S_4O_6^{2-}$? Can it have such a value? Can you provide a suitable explanation?

What is the oxidation state of each element in the following compounds?

CH₄ PCI₃ NCI₃ CS_2 ICI₅ BrF₃

MgCl₂ H_3PO_4 NH₄CI H₂SO₄ MgCO₃ SOCI₂

REDOX REACTIONS


Redox When reduction and oxidation take place

Oxidation Removal of electrons; species will get less negative / more positive Reduction Gain of electrons; species will become more negative / less positive

> REDUCTION in O.S. Species has been REDUCED e.g. Cl is reduced to Cl⁻ (0 to -1)

INCREASE in O.S. Species has been OXIDISED e.g. Na is oxidised to Na⁺ (0 to +1)

OIL RIG Oxidation Is the Loss Reduction Is the Gain of electrons

0.5 Classify the following (unbalanced) changes as oxidation, reduction or neither.

- a) Mg ----> Mg²⁺
- b) O²⁻ ---> O
- c) AI^{3+} \longrightarrow AI

- d) Fe^{3+} —> Fe^{2+}
- e) *Ti*³⁺ ----> *Ti*⁴⁺
- f) $2Q \longrightarrow Q_2$

Q.6 What change takes place in the oxidation state of the underlined element? Classify the change as oxidation, reduction or neither.

- a) <u>N</u>O₃ ----> NO
- b) $H\underline{N}O_3 \longrightarrow N_2O$
- c) $\underline{CH_4}$ \longrightarrow CO

- d) MnO_2 ---> Mn^{2+}
- e) $Cr_2O_7^{2-}$ ---> Cr^{3+}
- $f) \le O_3^{2-} \longrightarrow SO_4^{2-}$
- g) $\underline{Cr_2O_7^{2-}} \longrightarrow CrO_4^{2-}$ h) $H_2\underline{O_2} \longrightarrow H_2O$ i) $H_2\underline{O_2} \longrightarrow O_2$

How to balance redox half equations

- Step 1 Work out the formula of the species before and after the change
 - 2 Work out the oxidation state of the element before and after the change
 - 3 Add electrons to one side of the equation so that the oxidation states balance
 - **4** If the charges on all the species (ions and electrons) on either side of the equation do not balance then add sufficient H⁺ ions to one of the sides to balance the charges
 - 5 If the equation still doesn't balance, add sufficient water molecules to one side
- Example 1 Iron(II) being oxidised to iron(III).

Step 1
$$Fe^{2+}$$
 \longrightarrow Fe^{3+}

Step 3
$$Fe^{2+}$$
 ——> Fe^{3+} + e^{-}

now balanced

Example 2 MnO₄⁻ being reduced to Mn²⁺ in acidic solution

Step 3
$$MnO_4^- + 5e^- \longrightarrow Mn^{2+}$$

Step 4
$$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+}$$

Step 5
$$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$$
 now balanced

Q.7 Balance the following half equations

$$I_2$$
 \longrightarrow I^-

$$C_2O_4^{2-}$$
 -> 2CO₂

$$H_2O_2$$
 \longrightarrow O_2

$$H_2O_2$$
 \longrightarrow H_2O

$$Cr_2O_7^{2-}$$
 \longrightarrow Cr^{3+}

$$SO_4^{2-}$$
 \longrightarrow SO_2

Oxidation and Reduction — 5

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

Step 1 Write out the two half equations

- 2 Multiply the equations so that the number of electrons in each is the same
- 3 Add the two equations and cancel out the electrons on either side of the equation
- 4 If necessary, cancel out any other species which appear on both sides of the equation

Example The reaction between manganate(VII) and iron(II).

Step 1
$$Fe^{2+}$$
 —> Fe^{3+} + e^{-} Oxidation MnO_4^- + $5e^-$ + $8H^+$ —> Mn^{2+} + $4H_2O$ Reduction

Step 2
$$5Fe^{2+}$$
 ---> $5Fe^{3+}$ + $5e^{-}$ multiplied by 5 MnO_4^- + $5e^-$ + $8H^+$ ---> Mn^{2+} + $4H_2O$ multiplied by 1

Step 3
$$MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 5e^-$$

Step 4
$$MnO_4^- + 56^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 56^-$$

gives
$$MnO_4^- + 8H^+ + 5Fe^{2+}$$
 ---> $Mn^{2+} + 4H_2O + 5Fe^{3+}$

Q.8 Construct balanced redox equations for the reactions between

- a) Mg and H⁺
- b) $Cr_2O_7^{2-}$ and Fe^{2+}
- c) H_2O_2 and MnO_4^-

- d) $C_2O_4^{2-}$ and MnO_4^-
- e) $S_2O_3^{2-}$ and I_2
- f) $Cr_2O_7^{2-}$ and I^-