
Moles	AS1	>	1
	MOLES	3	
The mole	 the standard unit of amount of a substan the number of particles in a mole is know Avogadro's constant has a value of 6.02 	vn as Avogadro's constant (L)	
Example	If one atom has a mass of one mole of atoms will have a mass of	1.234 x 10 ⁻²³ g 1.234 x 10 ⁻²³ g x 6.023 x 10 ²³	= 7.432g
Q.1	Calculate the mass of one mole of carbo mass of neutron 1.674 x 10 ⁻²⁴ g, mass of e	· -	$72 \ x \ 10^{-24} g$,

MOLE CALCULATIONS

MOLE CALCU	JLATIONS				
Substances	mass molar mass	g g mol ⁻¹	or or	kg kg mol ⁻¹	moles = <u>mass</u> molar mass
Example	oxygen molecules the relative mass	have the for	rmula 5 = 32 =	ygen molecules in O ₂ so the molar mass	
~	Calculate the numb 10g of Ca atoms 10g of CaCO ₃ 36g of water molec 4g of hydrogen atom 4g of hydrogen mol	ules ms	n		
	Calculate the mass 2 moles of CH ₄ 0.5 moles of NaNO 6 moles of nitrogen 6 moles of nitrogen 20 moles of NH ₃	³ atoms			

Example 1 Calculate the number of moles of sodium hydroxide in 25cm³ of 2M NaOH

moles = $molarity \times volume in cm^3$ = $2 mol dm^{-3} \times 25 cm^3$ ANS. 0.05 moles 1000

Example 2 What volume of $0.1M H_2SO_4$ contains 0.002 moles?

 $\overline{0.1 \text{ mol } dm}^{-3}$

 $volume = \frac{1000 \times moles}{molarity}$ (re-arrangement of above) = 1000 x 0.002 **ANS. 20 cm³**

Example 3 4.24g of Na₂CO₃ are dissolved in water and the solution made up to 250 cm³.

What is the concentration of the solution in mol dm⁻³?

molar mass of Na_2CO_3	= 106g mol ⁻¹		
no. of moles in 250cm ³	= 4.24g / 106g mol ⁻¹	= 0.04	moles
no. of moles in 1000cm ³ (1dm ³)	= 0.16 moles	ANS.	0.16 mol dm ⁻³ .

<i>Q.3</i>	3 Calculate the number of moles in 1dm ³ of 2M NaOH 250cm ³ of 2M Na				
	5dm ³ of 0.1M HCl	$25 cm^3 of 0.2M H_2 SO_4$			
	Calculate the concentration (in moles du 0.2 moles of HCl in 2dm ³	m ⁻³) of solutions containing 0.1 moles of NaOH in 25cm ³			

EMPIRICAL FORMULAE AND MOLECULAR FORMULAE

AS1

Empirical Formula

Description	Expresses the elements in a simple ratio (e.g. CH_2). It can sometimes be the same as the molecular formula (e.g H_2O and CH_4)					
Calculations	 You need mass, or percentage mass, of each element present relative atomic masses of the elements present 					
Example 1	Calculate the empirical formula of a compound containing C (48%), H (4%) and O (48%)					
	СНО					
	1) Write out percentages (by mass)	48%	4%	48%		
	2) Divide by the relative atomic mass	48/12	4/1	48/16		
	this gives a molar ratio	4	4	3		
	3) If not whole numbers then scale up					
	<i>4)</i> Express as a formula	$C_4H_4O_3$				

Example 2 Calculate the empirical formula of a compound containing C (1.8g), O (0.48g), H (0.3g)

	С	н	Ο
1) Write out ratios by mass	1.8	0.3	0.48
2) Divide by relative atomic mass	1.8 / 12	0.3/1	0.48 / 16
(this gives the molar ratio)	0.15	0.3	0.03
3) If not whole numbers then scale up			
- try dividing by smallest value (0.03)	5	10	1
4) Express as a formula	$C_5H_{10}O$		

Molecular Formula

Description Exact number of atoms of each element in the formula (e.g. C₄H₈)

Calculations Compare the empirical formula with the relative molecular mass. The relative molecular mass of a compound will be an exact multiple (x1, x2 etc.) of its relative empirical mass.

Example	Calculate the molecular formula of a composition formula CH_2 and relative molecular mass 84	,
	mass of CH_2 unit	= 14
	divide molecular mass (84) by 14	= 6
	molecular formula = empirical formula x 6	$= C_6 H_{12}$

3

MOLAR MASS CALCULATIONS

AS1

RELATIVE MASS Relative Atomic Mass (A _r)		The mass of an atom relative to that of the carbon 12 isotope having a value of 12.000
	or	average mass per atom of an element x 12
		mass of an atom of carbon-12
	Relative Molecular Mass (M _r)	The sum of all the relative atomic masses present in an entity - even if it is ionic and so not a molecule!
	or	average mass of an entity x 12 mass of an atom of carbon-12

MOLAR MASS

Description The mass of one mole of substance. It has units of **g mol**⁻¹ or **kg mol**⁻¹.

e.g. the molar mass of water is 18 g mol^{1}

molar mass = mass of one particle x Avogadro's constant (i.e. 6.023 x 10²³ mol⁻¹)

Calculations metho	ds include using	 the ideal gas e the Molar Volu	•	V = nRT
For	1 mole of gas	PV = RT		PV = nRT
for n	moles of gas	PV = nF	RΤ	
	also	$PV = \frac{mF}{M}$		$PV = \frac{m R T}{M}$
where	V volume	moles of gas	Pascals (F m³	Pa) or N m ⁻² (there are 10 ⁶ cm ³ in a m ³)
	R gas consta T temperatu m mass M molar mas	re	8.31 J K ⁻¹ Kelvin g or Kg g mol ⁻¹ or	(K = °C + 273)
Old units	1 atmosphere 1 litre (1 dm ³) 1 Joule	is equivalent to is equivalent to is equivalent to	760 mm/H 1 x 10 ⁻³ m ³ 1 Nm	g or 1.013 x 10 ⁵ Pa (Nm ⁻²)

4

Moles

Example 1 Calculate the number of moles of gas present in 500cm³ at 100 KPa pressure and at a temperature of 27°C.

AS1

P V T R	= 100 KPa = 500 cm ³ x 10 ⁴ = 27 + 273 = 8.31 J K ⁻¹ mol ⁻¹	$= 300 \mu$)5 m ³		
PV=	nRT ∴	$n = \frac{PV}{RT}$	=	100000 x 0.0005 300 x 8.31	= 0.02 moles

5

Example 2 Calculate the relative molecular mass of a vapour if 0.2 g of gas occupy 400 cm³ at a temperature of 223°C and a pressure of 100 KPa.

$P = 100 \text{ KPa} \\ V = 400 \text{ cm}^3 \\ T = 227 + 27 \\ m = 0.27g \\ R = 8.31 \text{ J K}$	³ x 10 ⁻⁶ 73	= 100000 = 0.0004 = 500 K = 0.27g = 8.31		
$PV = \frac{mRT}{M}$.:. M	$= \frac{mRT}{PV}$	$= \underbrace{0.27 \times 500 \times 8.31}_{100000 \times 0.0004}$	= 28.04

<i>Q.4</i>	• Convert the fol		
	a) 1dm ³	<i>b</i>) 250 <i>cm</i> ³	b) 0.1cm ³

Convert the following temperatures into Kelvin
a) 100°C
b) 137°C
b) 123°C

• Calculate the volume of 0.5 mol of propane gas at 298K and 10⁵ Pa pressure

• Calculate the mass of propane (C_3H_8) contained in a 0.01 m³ flask maintained at a temperature of 273K and a pressure of 250kPa.

MOLAR VOLUME

The molar volume of any gas or vapour at stp is 22.4 dm³ mol⁻¹ (0.0224 m³ mol⁻¹)

stp Standard Temperature and Pressure (273K and 1.013 x 10⁵ Pa)

The volume of a gas varies with temperature and pressure. To convert a volume to that which it will occupy at stp (or any other temperature and pressure) one uses the following relationship which is derived from Boyle's Law and Charles' Law.

$$\frac{\mathbf{P}_1\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2\mathbf{V}_2}{\mathbf{T}_2}$$

where P1 initial pressure

V₁ initial volume

- **T**₁ initial temperature (in Kelvin)
- P₂ final (in this case, standard) pressure
- V₂ final volume (in this case, at stp)
- T₂ final (in this case, standard) temperature (in Kelvin)
- *Calculations* Convert the volume of gas to that at stp then scale it up to the molar volume. The mass of the gas occupying 22.4 dm³ (i.e. 22.4 litres , 22400cm³) is the molar mass.
- *Experiment* It is possible to calculate the molar mass of a gas by measuring the volume of a given mass of gas and applying the above equations.

Methods • Gas syringe method

6

- Victor Meyer method
- Dumas bulb method

Example A sample of gas occupies 0.25 dm³ at 100°C and 5000 Pa pressure. Calculate its volume at stp [273K and 100 kPa].

*P*₁ *initial pressure* = 5000 Pa P₂ final pressure = 100000 Pa V₁ initial volume $= 0.25 \, dm^3$ final volume = ? V_2 T_1 initial temperature T_2 temperature = 373K= 273Kthus 5000 x 0.25 $100000 \times V_2$ = 373 273 therefore V_2 $273 \times 5000 \times 0.25 =$ **0.00915 dm³** (9.15 dm³) = 373 x 100000

AS1

Moles	AS1 7						
Gay-Lussac'	s Law of Combining Volumes						
Statement	"When gases combine they do so in volumes that are in a simple ratio to each other and to that of any gaseous product(s) "						
	N.B. all volumes must be measured at the same temperature and pressure.						
Avogadro's 1	Гheory						
Statement	" Equal volumes of all gases, at the same temperature and pressure, contain equal numbers of molecules "						
Calculations	Gay-Lussac's Law and Avogadro's Theory can be used for reacting gas calculations.						
example 1	What volume of oxygen will be needed to ensure that 250cm ³ methane undergoes complete combustion at 120°C ? How much carbon dioxide will be formed ?						
	$CH_{4(g)}$ + $2O_{2(g)}$ > $CO_{2(g)}$ + $2H_2O_{(g)}$ 1 molecule2 molecules1 molecule2 molecules1 volume2 volumes1 volume2 volumes (a gas at 120°C)250cm3500cm3250cm3500cm3						
Special tips	An excess of one reagent is often included; e.g. excess O_2 ensures complete combustion						
	Check the temperature, and state symbols, to check which compounds are not gases. This is especially important when water is present in the equation.						
example 2	20cm ³ of propane vapour is reacted with 120cm ³ of oxygen at 50°C. What will be the composition of the final mixture at the same temperature and pressure?						
	$C_3H_{8(g)}$ + $5O_{2(g)}$ > $3CO_{2(g)}$ + $4H_2O_{(l)}$ 1 molecule5 molecules3 molecules4 molecules1 volume5 volumes3 volumesnegligible (it is a liquid at 50°C)20cm ³ 100cm ³ 60cm ³						

ANSWER 20cm³ of unused oxygen and 60cm³ of carbon dioxide.

example 3 1g of gas occupies 278 cm^3 at 25°C and 2 atm pressure. Calculate its molar mass.

i) convert volume to stp	$2 \times 278 =$	1 x V	$V = 278 x 2 x 273 = 509 cm^3$
	298	273	1 x 298

ii) convert to molar volume	e 1g	occupies	509cm ³	at stp
	1/509g	"	1 <i>ст</i> ³	"
	22400 x 1/509g	"	22400cm ³	"
therefore	44g	occupies	22.4 dm ³	at stp

ANSWER: The molar mass is 44g mol⁻¹

20cm³ will be unused