CHEMICAL ENERGETICS (2)

Introduction Before starting, make sure you understand the topics studied in the earlier AS modules

these included ... Exothermic and endothermic reactions Standard Enthalpy of Formation ($\Delta H^{\circ}_{f,298}$) Standard Enthalpy of Combustion ($\Delta H^{\circ}_{c,298}$) Mean Bond Enthalpy Hess's Law

Standard Enthalpy of Formation (ΔH°_{f})

- *Definition* The enthalpy change when ONE MOLE of a compound is formed in its standard state from its elements in their standard states.
- Values Usually, but not exclusively, exothermic

Example(s) $2C_{(graphite)} + \frac{1}{2}O_{2(g)} + 3H_{2(g)} - C_{2}H_{5}OH_{(I)}$

- Elements In their standard states have zero enthalpy of formation.
 - Carbon is usually taken as the graphite allotrope.

Standard Enthalpy of Combustion (ΔH°_{c})

Definition The enthalpy change when ONE MOLE of a substance undergoes complete combustion under standard conditions. All reactants and products are in their standard states.

Values Always exothermic

Notes

 $Example(s) \qquad C_{(graphite)} + O_{2(g)} \longrightarrow CO_{2(g)}$

 $C_2H_5OH_{(I)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(I)}$

Bond Dissociation Energy (Enthalpy)

Definition	The energy required to break ONE MOLE of gaseous bonds to form gaseous atoms.			
Values	Endothermic Energy must be put in to break any chemical bond			
Example	$Cl_{2(g)} \longrightarrow 2Cl_{(g)}$			

- the strength of a bond also depends on its environment; MEAN values are quoted
 - making a bond is an exothermic process as it is the opposite of breaking a bond
 - for diatomic gases, the bond enthalpy is twice the enthalpy of atomisation
 - the smaller the bond enthalpy, the weaker the bond and the easier it is to break

Standard Enthalpy of Atomisation (ΔH°_{at} , 298)

Definition	The enthalpy change when ONE MOLE of gaseous atoms is formed from an element in its standard state.				
Values	Always endothermic - you have to break the bonds holding the atoms together				
Example(s)	$\frac{1}{2}CI_{2(g)} \longrightarrow CI_{(g)}$ and $Na_{(s)} \longrightarrow Na_{(g)}$ (see note)				
Notes	• For elements that are solids, the change is known as ENTHALPY OF SUBLIMATION.				

• Do not confuse with Bond (Dissociation) Energy. (see earlier notes)

 Q.1
 Write equations representing the standard enthalpies of atomisation / sublimation of magnesium

 carbon
 carbon

 oxygen
 hydrogen

First Ionisation Energy

Definition The energy required to remove one mole of electrons (to infinity) from one mole of gaseous atoms to form one mole of gaseous positive ions.

Values Always endothermic you have to overcome the pull of the nucleus on the electron

Example(s) $Na_{(g)} \longrightarrow Na_{(g)}^{+} e^{-}$ and $Mg_{(g)} \longrightarrow Mg_{(g)}^{+} e^{-}$

- Notes
 There is an ionisation energy for each successive electron removed.
 e.g. SECOND IONISATION ENERGY Mg⁺(g) -----> Mg²⁺(g) + e⁻
 - Look back in your notes to refresh your memory about the trends in I.E.'s

Electron Affinity

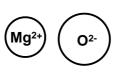
Definition The enthalpy change when ONE MOLE of gaseous atoms acquires ONE MOLE of electrons (from infinity) to form ONE MOLE of gaseous negative ions.

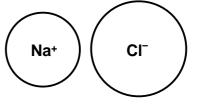
Values Always exothermic - a favourable process due to the nucleus attracting the electron

- Example $CI_{(g)} + e^{-} CI_{(g)}$
- Notes Do not confuse electron affinity with electronegativity.

Lattice Energy (Enthalpy)

WARNING There can be two definitions - one is the opposite of the other! Make sure you know which one is being used.


a) Lattice Formation Enthalpy


- *Definition* The enthalpy change when ONE MOLE of an ionic crystal lattice is formed from its isolated gaseous ions.
- *Values highly exothermic* strong electrostatic attraction between ions of opposite charge
 a lot of energy is released as the bond is formed
 - relative values are governed by the charge density of the ions.

Example

 $Na^{+}_{(g)}$ + $Cl^{-}_{(g)}$ -----> $Na^{+} Cl^{-}_{(s)}$

- Notes
- one cannot measure this value directly; it is found using a Born-Haber cycle
 - the greater the charge densities of the ions, the more they attract each other and the larger the lattice enthalpy.
 - the more exothermic the lattice enthalpy, the higher the melting point

HIGH CHARGE DENSITY IONS LARGE LATTICE ENTHALPY

LOWER CHARGE DENSITY IONS SMALLER LATTICE ENTHALPY

Q.2 Which substance in the the following pairs has the larger lattice enthalpy?

- a) NaCl or KCl
- b) NaF or NaCl
- c) $MgCl_2$ or NaCl
- d) $MgO \ or \ MgCl_2$

Consequences

MgO

- magnesium oxide is used to line furnaces REFRACTORY LINING
 - this is because of its high melting point (2853°C)
 - the high melting point is a result of the large (highly exothermic) lattice enthalpy
 - the high lattice enthalpy is due to the attraction between ions of high charge density

	Mg ²⁺ O ²⁻	Ca ²⁺ O ²⁻	Sr ²⁺ O ²⁻	Ba ²⁺ O ²⁻
Lattice Enthalpy (kJ mol ⁻¹)	-3889	-3513	-3310	-3152
Melting Point (°C)	2853	—— decreasing values ——>		

Thermal stability

• thermal stability of Group II carbonates increases down the group

- MgCO₃ decomposes much easier than BaCO₃
- BUT the lattice enthalpy of MgCO₃ is HIGHER!

	MgCO ₃	CaCO ₃	SrCO ₃	$BaCO_3$
Decomposes at	350°C	832°C	1340°C	1450°C
Lattice Enthalpy (kJ mol-1)	-3123		>	-2556

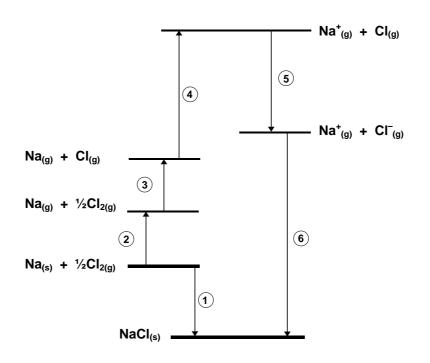
- Mg²⁺ ions are SMALLER and have a HIGHER CHARGE DENSITY
- this makes them MORE HIGHLY POLARISING
- they **DISTORT THE CO32-** ion
- this WEAKENS THE ATTRACTION BETWEEN IONS
- the LATTICE IS NOT AS STRONG

M⁺X⁻_(s)

b) Lattice Dissociation Enthalpy

Definition	The enthalpy change gaseous ions.	when ONE MOLE of an	ionic lattice disso	ciates into isolated
Values	• •	 strong electrostatic attraction put in to overcome the attraction 		f opposite charge
Example	Na⁺ Cl⁻ _(s) >	Na⁺ _(g) + Cl⁻ _(g)		
	$M_{(g)}^{+} + X_{(g)}^{-}$		$M^+_{(g)} + X^{(g)}$ —	
	LATTICE DISSOCIATION ENTHALPY		LATTICE FORMATION ENTHALPY	

M⁺X⁻_(s)



BORN-HABER CYCLES

Theory involve the application of Hess's Law

- used to outline the thermodynamic changes during the formation of ionic salts
- used to calculate Lattice Enthalpy which cannot be determined directly by experiment

BORN-HABER CYCLE FOR SODIUM CHLORIDE

STEPS (values are in kJ/mol⁻¹)

① Enthalpy of formation of NaCl	$Na(s) + \frac{1}{2}Cl_2(g) \longrightarrow NaCl(s)$	- 411
⁽²⁾ Enthalpy of sublimation of sodium	Na(s) ——> Na(g)	+ 108
③ Enthalpy of atomisation of chlorine	$\frac{1}{2}Cl_2(g) \longrightarrow Cl(g)$	+ 121
④ Ist Ionisation Energy of sodium	Na(g) \longrightarrow Na ⁺ (g) + e ⁻	+ 500
⑤ Electron Affinity of chlorine	$Cl(g) + e^- \longrightarrow Cl^-(g)$	- 364
⁶ Lattice Enthalpy of NaCl	$Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$	

According to Hess's Law, the enthalpy change is independent of the path taken. Therefore...

STEP 6 = -(STEP 5) - (STEP 4) - (STEP 3) - (STEP 2) + (STEP 1)- $(-364) - (+500) - (+121) - (+108) + (-411) = -776 \text{ kJ mol}^{-1}$

3 Construct similar Born-Haber cycles for $NaCl_2$ and $MgCl_2$ using suitable data.

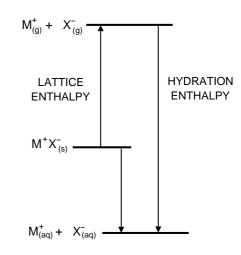
If the Lattice Enthalpy of $NaCl_2$ is -3360 kJ mol⁻¹, what is its enthalpy of formation ? What does this tell you about the stability of $NaCl_2$?

If the Lattice Enthalpy of M_gCl_2 is -2493 kJ mol⁻¹, what is its enthalpy of formation?

2815

Enthalpy of Hydration

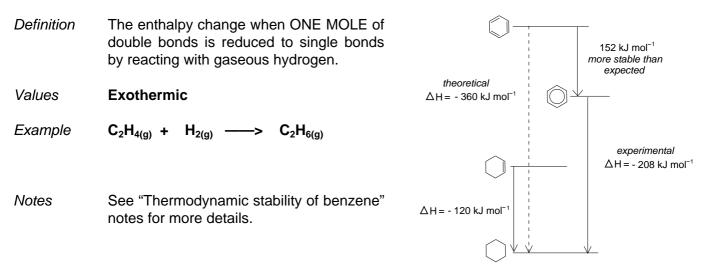
Definition The enthalpy change when ONE MOLE of gaseous ions dissolves in (an excess of) water.


Values Exothermic

Example $Na^{+}_{(g)} \longrightarrow Na^{+}_{(aq)}$

Notes The polar nature of water stabilises the ions.

The greater the charge density of the ion, the greater the affinity for water and the more exothermic the process will be.


Comparing Lattice Energy (LE) with the Hydration Enthalpy (HE) of the ions gives an idea of the solubility of a substance.

If LE >> HE then the salt will probably be insoluble.

Q.4 What name is given to the third step in the above diagram involving the change... $M^+X^-(s) \longrightarrow M^+(aq) + Cl^-(aq)$

Enthalpy of Hydrogenation

Q.5 Why are average bond enthalpies quoted in calculations?

SOME USEFUL VALUES FOR THERMODYNAMIC CHANGES

Values, which may be slightly different in other books, are in kJ mol⁻¹

Enthalpy of formation				
and combustion		ΔH_f	ΔH_c	
	H_2	0	-286	
	O_2	0	0	
	C CO ₂	0 -393	-393 0	
	H_2O	-242	0	
	H_2O CH ₄	-242 -75	-890	
	$C_{2}H_{6}$	-85	-1560	
	C_2H_6 C_3H_8	-104	-2219	
	C_2H_4	+52	-1410	
	$C_{6}H_{10}$	-38	-3752	
	CH ₃ COOH		-874	
	C ₂ H ₅ OH	-277	-1367	
Enthalny of atomication	H +218	P No + 109	F +79	
Enthalpy of atomisation	H +218 C +716		F +79 Cl +122)
	N +472			
	0 +249	U	$\mathbf{D}\mathbf{I}$ $\pm \mathbf{I}\mathbf{I}2$	
	0 1242	Cu 1170		
Ionisation Energy		1st I.E.	2nd I.E.	
	Na	+496	+4563	
	Mg	+738	+1451	
	Ca	+590	+1145	
	Κ	+419	+3051	
Electron Affinity	F -348	Cl -349	Br -342	I⁻ -314
Lattice Enthalpy		Cl ⁻ Br ⁻	F^-	<i>O</i> ²⁻
Check which definition	Na ⁺	-780 -742	-918	-2478
is being used and use	\mathbf{K}^+	-711 -679	-817	-2232
appropriate sign for ΔH	Rb^+	-685 -656	-783	
	Mg^{2+}	-2256		-3791
	Ca ²⁺	-2259		
Hydration Enthalpy	Li+	-499	Be ²⁺	-2385
ny dructon Entitutpy	Na ⁺	-390	Mg^{2+}	-1891
	K ⁺	-305	Ca ²⁺	-1561
Bond Enthalpy (average)	C-C	+347	C=C	+612
- shu zhonipj (uteruge)	C-H	+413	C-0	+336
	C=O	+805 (CO ₂)	C=O	+740 (ald/ket)
	O-H	+464	H-H	+436
	0=0	+498		