PRINCIPLES OF CATALYTIC ACTION

Introduction The two basic types of catalytic action ... heterogeneous and homogeneous

Heterogeneous Catalysis

Are in a different phase to the reactants; e.g. a solid catalyst in a gaseous reaction

Action

- takes place at active sites on the surface of a solid (e.g. a metal)
- gases are adsorbed onto the surface and form weak bonds with metal atoms

Catalysis is thought to work in three stages as follows ...

Adsorption

• formation of bonds with the metal may use some of the electrons from bonds within the gas molecules thus weakening these bonds and making a subsequent reaction easier.

Reaction

• adsorbed gases may be held on the surface of the metal in just the right orientation for a reaction to occur. This increases the chances of favourable collisions taking place.

Desorption

• the products are then released from the active sites

HARD Hetero = Adsorption + Reaction + Desorption

The strength of adsorption is critical ...

- too weak (Ag) little adsorption few available d orbitals
- too strong (W) molecules will remain on the surface and prevent further reaction
- just right (Ni/Pt)

read about VOLCANO CURVES

Rate

Catalysis of gaseous reactions can lead to an increase in rate in several ways ...

- one species is adsorbed onto the surface and is more likely to undergo a collision
- one species is held in a favourable position for reaction to occur
- adsorption onto the surface allows bonds to break and fragments react quicker
- two reactants are adsorbed alongside each other give a greater concentration

Format

• used in a **finely divided** form increases the surface area

provides more collision sites.

mounted in a support medium maximises surface area and reduces costs.

Examples

of catalysts • Metals Ni, Pt hydrogenation reactions

Fe Haber Process

Oxides Al₂O₃ dehydration reactions

V₂O₅ Contact Process

Specificity

In some cases the choice of catalyst can influence the products . . . **ethanol undergoes two different reactions depending on the metal used as the catalyst.**

The **distance between active sites** and their similarity with the length of bonds determines the method of adsorption and affects which bonds are weakened.

Copper Dehydrogenation (oxidation)

$$C_2H_5OH$$
 ---> CH_3CHO + H_2

Alumina Dehydration

$$C_2H_5OH$$
 \longrightarrow C_2H_4 + H_2O

Poisoning

Impurities in a reaction mixture can also **adsorb onto the surface** of a catalyst thus **removing potential sites** for gas molecules and decreasing efficiency.

expensive because the catalyst has to replaced

the process has to be shut down

examples Sulphur Haber process

Lead catalytic converters in cars

Homogeneous Catalysis

Action Catalyst and reactants are in the **same phase**.

- reaction proceeds through an intermediate species with lower energy
- there is usually more than one reaction step
- transition metal ions are often involved oxidation state changes during the reaction

Acids

e.g. hydrolysis of esters

Gases

OZONE in the atmosphere breaks down naturally as follows ...

$$O_3 \longrightarrow O + O_2$$

Α5

However it breaks down more easily in the presence of chlorofluorcarbons (CFC's).

There is a series of complex reactions but the basic process is :-

• CFC's break down in the presence of UV light to form chlorine radicals

$$CCI_2F_2$$
 \longrightarrow CI^{\bullet} + $^{\bullet}CCIF_2$

chlorine radicals then react with ozone

$$O_3$$
 + Cl^{\bullet} ---> ClO^{\bullet} + O_2

• chlorine radicals are regenerated

$$CIO \bullet + O \longrightarrow O_2 + CI \bullet$$

Overall, chlorine radicals are not used up so a small amount of CFC's can destroy thousands of ozone molecules before they take part in a termination stage.

Transition metal compounds

These work because of their ability to change oxidation state.

Example 1 Reaction between iron(III) and vanadium(III) is catalysed by Cu²⁺

step 1
$$Cu^{2+} + V^{3+} \longrightarrow Cu^{+} + V^{4+}$$

step 2 $Fe^{3+} + Cu^{+} \longrightarrow Fe^{2+} + Cu^{2-}$
overall $Fe^{3+} + V^{3+} \longrightarrow Fe^{2+} + V^{4+}$

Example 2 Reaction between I^- and $S_2O_8^{2-}$

The reaction is slow because REACTANTS ARE NEGATIVE IONS : REPULSION Addition of iron(II) catalyses the reaction

step 1
$$S_2O_8^{2-} + 2Fe^{2+} \longrightarrow 2SO_4^{2-} + 2Fe^{3+}$$

step 2 $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$
overall $S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$

Autocatalysis

Occurs when a **product of the reaction catalyses the reaction** itself It is found in the reactions of manganate(VII) with ethandioate

$$2MnO_4^- + 16H^+ + 5C_2O_4^{2-}$$
 ---> $2Mn^{2+} + 8H_2O + 10CO_2$

- the titration needs to be carried out at 70°C because the reaction is slow
- as Mn²⁺ is formed the reaction speeds up; the Mn²⁺ formed acts as the catalyst

ENZYMES

Action

- enzymes are extremely effective biologically active catalysts
- they are homogeneous catalysts, reacting in solution with body fluids
- active sites are such that only one type of molecule will fit; "lock and key mechanism"
- makes enzymes very specific as to what they catalyse.

- A Only species with the correct shape can enter the active site in the enzyme
- **B** Once in position, the substrate can react with a lower activation energy
- C The new products do not have the correct shape to fit so the complex breaks up

Other points

Activity is affected by ...

- temperature it increases until the protein is denatured
- substrate concentration reaches a maximum when all sites are blocked
- pH many catalysts are made up of amino acids which can be protonated
- being poisoned when the active sites become "clogged" with unwanted molecules

Q.1

What is the importance of the following enzymes?

- amylase
- catalase
- invertase
- protease