2814

CARBONYL COMPOUNDS - Aldehydes and Ketones

Q.1 Carbonyl compounds are formed by oxidation of alcohols;

- a) Which type of alcohol is oxidised to an aldehyde?
 - b) Which type of alcohol is oxidised to a ketone?
 - c) What compounds are formed when aldehydes are oxidised?

Structure

- carbonyl groups consists of a carbon-oxygen double bond
- the bond is **polar** due to the difference in electronegativity
- aldehydes and ketones differ in what is attached to the carbon.

Bonding

- the carbonyl carbon is sp² hybridised and three sigma (σ) bonds are planar
 - the unhybridised 2p orbital of carbon is at 90° to these
 - it overlaps with a 2p orbital of oxygen to form a pi (π) bond
 - as oxygen is more electronegative than carbon the bond is polar

- Formation Aldehydes Oxidation of primary (1°) alcohols beware of further oxidation to acids
 Poduction of carboxydic acids
 - Reduction of carboxylic acids
 - Oxidation of secondary (2°) alcohols.

1

2	2814 Carbonyl compounds				
	IDENTIFYING A CARBONYL COMPOUND				
	characteristically strong peak around 1400-1600 cm⁻¹ in the infra red spectrum or mation of an orange crystalline precipitate with 2,4-dinitrophenylhydrazine				
How	ever, to narrow it down to an aldehyde or ketone you must do a second test				
	Differentiating between Aldehydes and Ketones				
Differentiation	 to distinguish an aldehyde from a ketone you need a mild oxidising agent 				
Tollen's Reagent	 ammoniacal silver nitrate - contains the diammine silver(I) ion - [Ag(NH₃)₂]⁺ acts as a mild oxidising agent and will oxidise aldehydes but not ketones the silver(I) ion is reduced to silver 				
	Ag⁺ _(aq) + e ⁻ > Ag _(s) • the test is known as THE SILVER MIRROR TEST				
Fehling's Solution	 contains copper(II) ions complexed with tartrate ions giving a blue solution on warming, it will oxidise aliphatic (but not aromatic) aldehydes copper(II) is reduced and a red precipitate of copper(I) oxide, Cu₂O, is formed The silver mirror test is the better alternative as it works with all aldehydes. 				
	Ketones do not react with Tollen's Reagent or Fehling's Solution.				
C	HEMICAL PROPERTIES OF CARBONYL COMPOUNDS				
OXIDATION	 provides a way of differentiating between aldehydes and ketones mild oxidising agents are best aldehydes are easier to oxidise powerful oxidising agents can oxidise ketones to a mixture of carboxylic acids 				
ALDEHYDES	easily oxidised to acids <i>e.g.</i> $RCHO_{(1)} + [O] \longrightarrow RCOOH_{(1)}$ $CH_3CHO_{(1)} + [O] \longrightarrow CH_3COOH_{(1)}$				
KETONES	only oxidised under vigorous conditions to acids with fewer carbon atoms.				

e.g. $C_2H_5COCH_2CH_{3(1)} + 3[O] \longrightarrow C_2H_5COOH_{(1)} + CH_3COOH_{(1)}$

NUCLEOPHILIC ADDITION REACTIONS

Mechanism • occurs with both aldehydes and ketones

- involves addition to the **polar** C=O double bond (oxygen has a greater electronegativity)
- attacked by nucleophiles at the positive carbon centre
- alkenes are non-polar and are attacked by electrophiles

Summary		Bond	Polarity	Attacked by	Result
	Carbonyl	C=O	Polar	Nucleophiles	Addition
	Alkene	C=C	Non-polar	Electrophiles	Addition

HCN

Equation

Mechanism

CH₃CHO

Reagenthydrogen cyanide - HCN (in the presence of KCN)Conditionsreflux in alkaline solutionNucleophilecyanide ion CN⁻Product(s)hydroxynitrile (cyanohydrin)

HCN

CH₃CH(OH)CN 2-hydrox

2-hydroxypropanenitrile

- Step 1 CN⁻ acts as a nucleophile and attacks the slightly positive C One of the C=O bonds breaks; a pair of electrons goes onto the O
- Step 2A pair of electrons is used to form a bond with H+Overall, there has been addition of HCN

Notes

• HCN is a weak acid ; HCN \implies H⁺ + CN⁻ few CN⁻ ions produced

- the reaction is catalysed by alkali which helps produce more of the nucleophilic CN⁻
- watch out for the possibility of **optical isomerism in hydroxynitriles**

· hydrolysis of the CN group to COOH is possible

3

2814

Q.2 Write out equations for the reactions between HCN and...

- *C*₂*H*₅*CHO* + *HCN* —>
- *CH*₃*COCH*₃ + *HCN* —>
- hexanal + HCN ____>

Indicate which reactions give rise to optically active organic compounds?

Why is the addition of HCN such a useful reaction?

 REDUCTION
 Reagent
 sodium tetrahydridoborate(III) (sodium borohydride), NaBH4

 Conditions
 aqueous or alcoholic solution

 Mechanism
 Nucleophilic addition (also reduction as it is addition of H⁻)

 Nucleophile
 H⁻ (hydride ion)

 Product(s)
 Alcohols : Aldehydes are REDUCED to primary (1°) alcohols.

 Ketones are REDUCED to secondary (2°) alcohols.

 $Equation(s) \qquad CH_{3}CHO + 2[H] \longrightarrow CH_{3}CH_{2}OH$

CH₃COCH₃ + 2[H] ----> CH₃CHOHCH₃

Notes The water provides a proton

NaBH₄ doesn't reduce C=C bonds. WHY?

e.g. $CH_2 = CHCHO + 2[H] \longrightarrow CH_2 = CHCH_2OH$

Q.3 Draw a diagram to indicate the bonding in NaBH₄. What shape is it ?

4

Carbonyl compou	unds ———	5
Alternative Method	Reagent Conditions Reaction type Product(s)	hydrogen catalyst - nickel or platinum Hydrogenation, reduction Alcohols :- Aldehydes are REDUCED to primary (1°) alcohols. Ketones are REDUCED to secondary (2°) alcohols.
	Equation(s)	CH ₃ CHO + H ₂ \longrightarrow CH ₃ CH ₂ OH CH ₃ COCH ₃ + H ₂ \longrightarrow CH ₃ CHOHCH ₃
		Hydrogen also reduces C=C bonds e.g. $CH_2 = CHCHO + 2H_2 \longrightarrow CH_3CH_2CH_2OH$

Q.4 Draw structures of the organic products formed when the following are reduced using... $NaBH_4$ H_2

 $CH_2 = CHCH_2CHO$

2,4-DINITROPHENYLHYDRAZINE

2814

$C_6H_3(NO_2)_2NHNH_2$

- reacts with carbonyl compounds (aldehydes and ketones) Theory
 - used as a simple test for aldehydes and ketones
 - makes orange crystalline derivatives 2,4-dinitrophenylhydrazones
 - · derivatives have sharp, well-defined melting points
 - also used to characterise (identify) carbonyl compounds.

Identification A simple way of characterising a compound (finding out what it is) is to measure...

• the melting point of a solid

· the boiling point of a liquid

The following structural isomers have similar boiling points because of similar van der Waals forces and dipole-dipole interactions. They would be impossible to identify with any precision using boiling point determination.

By forming the 2,4-dinitrophenylhydrazone derivatives and taking the melting point of the crystalline product, it will be easy to identify the unknown original carbonyl compound.

 $NH_2 - NH$ C = N - NHNO₂ NO₂ CH₂CHO NO₂ NO2

Mechanism

Typical

equation

ADDITION-ELIMINATION

6

 $NH_2 - NH_2$ NO₂ NO2

Melting point of 2,4-dnph derivative