ELECTROCHEMISTRY

REDOX
Reduction gain of electrons \(\text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s) \)
Oxidation removal of electrons \(\text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + 2e^- \)

HALF CELLS
- these are systems involving oxidation or reduction
- there are several types

METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

Reaction	\(\text{Cu}^{2+}(aq) + 2e^- \leftrightarrow \text{Cu}(s) \)
Electrode	copper
Solution	\(\text{Cu}^{2+}(aq) (1M) \) - 1M copper sulphate solution
Potential	+ 0.34V

Reaction	\(\text{Zn}^{2+}(aq) + 2e^- \leftrightarrow \text{Zn}(s) \)
Electrode	zinc
Solution	\(\text{Zn}^{2+}(aq) (1M) \) - 1M zinc sulphate solution
Potential	- 0.76V

GASES IN CONTACT WITH SOLUTIONS OF THEIR IONS

Reaction	\(2\text{H}^+(aq) + 2e^- \leftrightarrow \text{H}_2(g) \)
Electrode	platinum - you need a metal to get electrons in and out
Solution	\(\text{H}^+(aq) (1M) \) - 1M hydrochloric acid or 0.5M sulphuric
Gas	hydrogen at 100kPa (1 atm) pressure
Potential	0.00V

IMPORTANCE This half cell is known as... THE STANDARD HYDROGEN ELECTRODE

SOLUTIONS OF IONS IN TWO DIFFERENT OXIDATION STATES

Reaction	\(\text{Fe}^{3+}(aq) + e^- \leftrightarrow \text{Fe}^{2+}(aq) \)
Electrode	platinum - you need a metal to get electrons in and out
Solution	\(\text{Fe}^{3+}(aq) (1M) \) and \(\text{Fe}^{2+}(aq) (1M) \)
Potential	+ 0.77 V

SOLUTIONS OF OXIDISING AGENTS IN ACID SOLUTION

Reaction	\(\text{MnO}_4^- (aq) + 8\text{H}^+(aq) + 5e^- \leftrightarrow \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(l) \)
Electrode	platinum - you need a metal to get electrons in and out
Solution	\(\text{MnO}_4^- (aq) (1M) \) and \(\text{Mn}^{2+}(aq) (1M) \) and \(\text{H}^+(aq) \)
Potential	+ 1.52 V
CELL POTENTIAL
- each electrode / electrolyte combination has its own half-reaction

Measurement
- it is impossible to measure the potential of a single electrode BUT...
- you can measure the potential difference between two electrodes
- value is measured relative to a reference cell under standard conditions

STANDARD ELECTRODE POTENTIAL
The potential difference of a cell when the electrode is connected to the standard hydrogen electrode under standard conditions

The value is affected by...
- temperature
- pressure of any gases
- solution concentration

The ultimate reference is the STANDARD HYDROGEN ELECTRODE.

![Diagram of standard hydrogen electrode](https://example.com/diagram)

CONDITIONS
- temperature: 298K
- solution conc: 1 mol dm⁻³ with respect to H⁺ hydrogen
- pressure: 100 kPa (1 atm)

WHY USE PLATINUM?
- you need an inert metal to get the electrons in / out

Standard hydrogen electrode

\[E^\circ = 0.00V \]

However, as it is difficult to set up, secondary standards are used.

Secondary standards
- The standard hydrogen electrode (SHE) is hard to set up so it is easier to use a more convenient secondary standard which has been calibrated against the SHE.

Calomel
- the calomel electrode contains Hg₂Cl₂
- it has a standard electrode potential of +0.27V
- is used as the left hand electrode to determine the potential of an unknown
- to obtain the \(E^\circ \) value of the unknown cell ADD 0.27V to the measured potential
Experimental determination of E°

In the diagram below the standard hydrogen electrode is shown coupled up to a zinc half cell. The voltmeter reading gives the standard electrode potential of the zinc cell.

The species with the more positive potential (E° value) will oxidise one (i.e. reverse the equation) with a lower E° value.

Example

What will happen if an $Sn_{(s)}/Sn^{2+}_{(aq)}$ cell and a $Cu_{(s)}/Cu^{2+}_{(aq)}$ cell are connected?

- Write out the appropriate equations

 - $Cu^{2+}_{(aq)} + 2e^- \rightleftharpoons Cu_{(s)}$; $E^\circ = +0.34V$

 - $Sn^{2+}_{(aq)} + 2e^- \rightleftharpoons Sn_{(s)}$; $E^\circ = -0.14V$

- the half reaction with the more positive E° value is more likely to work
- it gets the electrons by reversing the half reaction with the lower E° value
- therefore $Cu^{2+}_{(aq)} \rightarrow Cu_{(s)}$ and $Sn_{(s)} \rightarrow Sn^{2+}_{(aq)}$
- the overall reaction is $Cu^{2+}_{(aq)} + Sn_{(s)} \rightarrow Sn^{2+}_{(aq)} + Cu_{(s)}$
- the cell voltage is the difference in E° values ... $(+0.34) - (-0.14) = +0.48V$
THE ELECTROCHEMICAL SERIES

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Standard Reduction Potential (E°) / V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{F}_2(\text{g}) + 2e^- \rightarrow 2\text{F}^- (\text{aq}))</td>
<td>+2.87</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}_2(\text{aq}) + 2\text{H}^+ (\text{aq}) + 2e^- \rightarrow 2\text{H}_2\text{O}(\text{l}))</td>
<td>+1.77</td>
</tr>
<tr>
<td>(\text{MnO}_4^- (\text{aq}) + 8\text{H}^+ (\text{aq}) + 5e^- \rightarrow \text{Mn}^{2+} (\text{aq}) + 4\text{H}_2\text{O}(\text{l}))</td>
<td>+1.52</td>
</tr>
<tr>
<td>(\text{PbO}_2(\text{s}) + 4\text{H}^+ (\text{aq}) + 2e^- \rightarrow \text{Pb}^{2+} (\text{aq}) + 2\text{H}_2\text{O}(\text{l}))</td>
<td>+1.47</td>
</tr>
<tr>
<td>(\text{Ce}^{4+} (\text{aq}) + e^- \rightarrow \text{Ce}^{3+} (\text{aq}))</td>
<td>+1.45</td>
</tr>
<tr>
<td>(\text{Cl}_2(\text{g}) + 2e^- \rightarrow 2\text{Cl}^- (\text{aq}))</td>
<td>+1.36</td>
</tr>
<tr>
<td>(\text{Cr}_2\text{O}_7^{2-} (\text{aq}) + 14\text{H}^+ (\text{aq}) + 6e^- \rightarrow 2\text{Cr}^{3+} (\text{aq}) + 7\text{H}_2\text{O}(\text{l}))</td>
<td>+1.33</td>
</tr>
<tr>
<td>(\text{MnO}_2(\text{s}) + 4\text{H}^+ (\text{aq}) + 2e^- \rightarrow \text{Mn}^{2+} (\text{aq}) + 2\text{H}_2\text{O}(\text{l}))</td>
<td>+1.23</td>
</tr>
<tr>
<td>(\text{Br}_2(\text{l}) + 2e^- \rightarrow 2\text{Br}^- (\text{aq}))</td>
<td>+1.07</td>
</tr>
<tr>
<td>(\text{Ag}^+ (\text{aq}) + e^- \rightarrow \text{Ag} (\text{s}))</td>
<td>+0.80</td>
</tr>
<tr>
<td>(\text{Fe}^{3+} (\text{aq}) + e^- \rightarrow \text{Fe}^{2+} (\text{aq}))</td>
<td>+0.77</td>
</tr>
<tr>
<td>(\text{O}_2(\text{g}) + 2\text{H}^+ (\text{aq}) + 2e^- \rightarrow \text{H}_2\text{O}_2(\text{l}))</td>
<td>+0.68</td>
</tr>
<tr>
<td>(\text{I}_2(\text{s}) + 2e^- \rightarrow 2\text{I}^- (\text{aq}))</td>
<td>+0.54</td>
</tr>
<tr>
<td>(\text{Cu}^+ (\text{aq}) + e^- \rightarrow \text{Cu} (\text{s}))</td>
<td>+0.52</td>
</tr>
<tr>
<td>(\text{Cu}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Cu} (\text{s}))</td>
<td>+0.34</td>
</tr>
<tr>
<td>(\text{Cu}^{2+} (\text{aq}) + e^- \rightarrow \text{Cu}^+ (\text{aq}))</td>
<td>+0.15</td>
</tr>
<tr>
<td>(\text{Sn}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Sn}^0 (\text{s}))</td>
<td>+0.15</td>
</tr>
<tr>
<td>(\text{H}_2(\text{g}))</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{Pb}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Pb} (\text{s}))</td>
<td>-0.13</td>
</tr>
<tr>
<td>(\text{Sn}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Sn} (\text{s}))</td>
<td>-0.14</td>
</tr>
<tr>
<td>(\text{Ni}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Ni} (\text{s}))</td>
<td>-0.25</td>
</tr>
<tr>
<td>(\text{Cr}^{3+} (\text{aq}) + e^- \rightarrow \text{Cr}^{2+} (\text{aq}))</td>
<td>-0.41</td>
</tr>
<tr>
<td>(\text{Fe}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Fe} (\text{s}))</td>
<td>-0.44</td>
</tr>
<tr>
<td>(\text{Zn}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Zn} (\text{s}))</td>
<td>-0.76</td>
</tr>
<tr>
<td>(\text{Al}^{3+} (\text{aq}) + 3e^- \rightarrow \text{Al} (\text{s}))</td>
<td>-1.66</td>
</tr>
<tr>
<td>(\text{Mg}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Mg} (\text{s}))</td>
<td>-2.38</td>
</tr>
<tr>
<td>(\text{Na}^+ (\text{aq}) + e^- \rightarrow \text{Na} (\text{s}))</td>
<td>-2.71</td>
</tr>
<tr>
<td>(\text{Ca}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Ca} (\text{s}))</td>
<td>-2.87</td>
</tr>
<tr>
<td>(\text{K}^+ (\text{aq}) + e^- \rightarrow \text{K} (\text{s}))</td>
<td>-2.92</td>
</tr>
</tbody>
</table>

Interpretation
- **F**₂ is the best oxidising agent: highest \(E^\circ \) value; most feasible reaction
- **K**⁺ is the worst oxidising agent: lowest \(E^\circ \) value; least feasible reaction
- **K** is the best reducing agent: most feasible reverse reaction

Use of \(E^\circ \)
- Used to predict the feasibility (likelihood) of redox and cell reactions
- In theory, ANY REDOX REACTION WITH A POSITIVE \(E^\circ \) VALUE WILL WORK
- In practice, it will proceed if the \(E^\circ \) value is greater than + 0.40V

An equation with a more positive \(E^\circ \) value will reverse a less positive one.
Combining half-cells

In the cell, copper has a more positive E° value (+0.34V) than zinc (-0.76V).

- The zinc metal is more reactive
- It dissolves to give ions
 \[
 \text{Zn}_\text{(s)} \rightarrow \text{Zn}^{2+}_\text{(aq)} + 2e^-
 \]
- The electrons produced go round the external circuit to the copper
- Electrons are picked up by copper ions and copper is deposited
 \[
 \text{Cu}^{2+}_\text{(aq)} + 2e^- \rightarrow \text{Cu}_\text{(s)}
 \]
- The voltage of the cell is 1.10V i.e. (+0.34V) - (-0.76V)

Cell diagrams

These give a diagrammatic representation of what is happening in a cell. Place the cell with the more positive E° value on the RHS of the diagram.

- Zn is in contact with a solution of zinc ions
- The solutions are joined by a salt bridge
- The solution of copper ions is in contact with copper

Drawing it out as shown indicates that ...

- The cell reaction goes from left to right
- The electrons go round the external circuit from left to right
- The cell voltage is E°(RHS) - E°(LHS). In this way it must be positive
- Oxidation takes place at the anode and reduction at the cathode

Conclusion

The reaction(s) will proceed from left to right

\[
\text{Oxidation} \quad \text{Zn}_\text{(s)} \rightarrow \text{Zn}^{2+}_\text{(aq)} + 2e^- \quad \text{at the ANODE}
\]

\[
\text{Reduction} \quad \text{Cu}^{2+}_\text{(aq)} + 2e^- \rightarrow \text{Cu}_\text{(s)} \quad \text{at the CATHODE}
\]

Electrons Go from the anode to the cathode via the external circuit

Cell reaction
\[
\text{Zn}_\text{(s)} + \text{Cu}^{2+}_\text{(aq)} \rightarrow \text{Zn}^{2+}_\text{(aq)} + \text{Cu}_\text{(s)}
\]

Cell voltage
\[
E^\circ(\text{RHS}) - E^\circ(\text{LHS}) = 0.34V - (-0.76V) = 1.10V
\]
Example Will this reaction be spontaneous? \[\text{Sn}_2(s) + \text{Cu}^{2+}(aq) \rightarrow \text{Sn}^{2+}(aq) + \text{Cu}(s) \]

Method

- Write out the half equations
 \[\text{Cu}^{2+}(aq) + 2e^- \rightleftharpoons \text{Cu}(s) ; \ E^o = +0.34V \]
 \[\text{Sn}^{2+}(aq) + 2e^- \rightleftharpoons \text{Sn}(s) ; \ E^o = -0.14V \]

 as reductions with their \(E^o \) values

 - The reaction which occurs involves the more positive one reversing the other
 - therefore \[\text{Cu}^{2+}(aq) \rightarrow \text{Cu}(s) \] and \[\text{Sn}(s) \rightarrow \text{Sn}^{2+}(aq) \]

 - If this is the equation you want (which it is) then it will be spontaneous

 - The cell voltage is the difference in \(E^o \) values...
 \[(+0.34V) - (-0.14V) = +0.48V \]

NOTE: **DOUBLING AN EQUATION DOES NOT DOUBLE THE \(E^o \) VALUE**

\[\frac{1}{2}\text{Cl}_2(g) + e^- \rightleftharpoons \text{Cl}^-(aq) \quad E^o = +1.36V \]
\[\text{Cl}_2(g) + 2e^- \rightleftharpoons 2\text{Cl}^-(aq) \quad E^o = +1.36V \]

Q.1 Which of the following reactions occur spontaneously ?

- \(\text{Fe}(s) + \text{Zn}^{2+}(aq) \rightarrow \text{Fe}^{2+}(aq) + \text{Zn}(s) \)
- \(\text{Sn}^{4+}(aq) + 2\text{Fe}^{2+}(aq) \rightarrow 2\text{Fe}^{3+}(aq) + \text{Sn}^{2+}(aq) \)
- \(\text{Sn}^{4+}(aq) + 2\text{I}^-(aq) \rightarrow \text{I}_2(s) + \text{Sn}^{2+}(aq) \)
- \(\text{Cl}_2(g) + 2\text{Br}^-(aq) \rightarrow \text{Br}_2(g) + 2\text{Cl}^-(aq) \)
- \(\text{I}_2(g) + 2\text{Br}^- (aq) \rightarrow \text{Br}_2(g) + 2\text{I}^-(aq) \)
- \(2\text{H}^+(aq) + \text{Zn}(s) \rightarrow \text{H}_2(s) + \text{Zn}^{2+}(aq) \)

For those that work, calculate the cell voltage.

IMPORTANT WARNING

Limitation of using \(E^o \) to predict the feasibility of a reaction

Kinetic

Standard electrode potentials are not always accurate in their predictions. They indicate if a reaction is possible but cannot say what the rate will be. Some reactions will not be effective as they are too slow.

Conditions

Because **TEMPERATURE** and **CONCENTRATION** affect the value of a standard electrode potential any variation can also affect the probability of a reaction taking place. Concentrations do change during a reaction.

Apply le Chatelier’s principle to predict the change in \(E^o \)
Q.2 Explain what reactions, if any, will occur if aqueous solutions of KCl, KBr and KI are treated with:
 a) acidified KMnO₄
 b) acidified K₂Cr₂O₇.

Q.3 Using E° values, explain why zinc reacts with dilute acids to produce hydrogen gas but silver doesn’t.

Q.4 Construct a cell diagram for a cell made up from Ni²⁺/Ni and Zn²⁺/Zn. Work out the overall reaction and calculate the potential difference of the cell.

Q.5 Why is hydrochloric acid not used to acidify potassium manganate(VII) ?

Q.6 Explain why the chemistry of copper(I) in aqueous solution is limited. The following half equations will help. Name the overall process which takes place.

\[
\begin{align*}
Cu^{+}_{(aq)} + e^- &\rightleftharpoons Cu_{(s)} \quad E^\circ = +0.52V \\
Cu^{2+}_{(aq)} + e^- &\rightleftharpoons Cu^{+}_{(aq)} \quad E^\circ = +0.15V
\end{align*}
\]