GLOBAL WARMING

Greenhouse	CARBON DIOXIDE	CO ₂	contains	C=O bonds
gases	WATER VAPOUR	H ₂ O	contains	O-H bonds
	METHANE	CH_4	contains	C-H bonds

The 'Greenhouse Effect' of a given gas is dependent on its...

atmospheric concentration ability to absorb infrared radiation

Introduction Different covalent bonds have different strengths due to the masses of different atoms at either end of the bond. As a result, they vibrate at different frequencies (imagine two balls on either end of a spring). The frequency of vibration can be found by detecting when the molecules absorb electro-magnetic radiation.

Various types of vibration are possible. **Bending** and **stretching** are two examples and are found in water molecules. Each occurs at a different frequency.

The frequencies lie in the INFRA RED part of the electromagnetic spectrum and can be detected using **infra red spectroscopy**.

An infra red spectrum of atmospheric air

It is the absorption of infra red radiation by atmospheric gases such as methane, carbon dioxide and water vapour that contributes to global warming.

1

DEPLETION OF THE OZONE LAYER

OZONE Although ozone is a reactive and poisonous gas, it protects us from harmful UV radiation which would affect life on earth. UV radiation can cause skin cancer.

Ozone in the stratosphere breaks down naturally $2O_3 \longrightarrow 3O_2$

Ozone (trioxygen) can break up to give ordinary oxygen and an oxygen radical

 $O_3 \longrightarrow O^{\bullet} + O_2$

Ultra violet light can supply the energy for the process. That is why the ozone layer is important as it protects us from the harmful rays.

BUT The breakdown is easier in the presence of chlorofluorcarbons (CFC's)

CFC's There is a series of complex reactions but the basic process is :-

•	CFC's break down in the presence of UV light to form chlorine radicals	$CCI_2F_2 \longrightarrow CI + -CCIF_2$
•	chlorine radicals react with ozone	O_3 + CI• -> CIO• + O_2
•	chlorine radicals are regenerated	$CIO + O \rightarrow O_2 + CI$

Overall, chlorine radicals are not used up so a small amount of CFC's can destroy thousands of ozone molecules before the termination stage.

NOx Oxides of nitrogen, NOx, formed during **thunderstorms** or by **aircraft** break down to give NO (nitrogen monoxide) which also catalyses the breakdown of ozone.

•	nitrogen monoxide reacts with ozone	O ₃	+	NO	->	NO	2 -	F O
•	nitrogen monoxide is regenerated	NO ₂	. +	- o	->	O ₂	+	NO

Q.1 CFC's were developed by chemists for specific purposes. What uses were they put to?

- - •
 - ,

3

4

POLLUTANT GASES FROM INTERNAL COMBUSTION ENGINES

F322

Carbon monoxide CO

- *Origin* incomplete combustion of hydrocarbons in petrol because of insufficient oxygen
- *Effect* poisonous
 - combines with haemoglobin in blood
 - prevents oxygen being carried

Oxides of nitrogen NO_x (NO, N_2O and NO_2)

Origin • combination of atmospheric nitrogen and oxygen under high temperature

eg $N_2(g) + O_2(g) \longrightarrow 2NO(g)$

Effect

aids formation of photochemical smog which is irritating to eyes, nose, throat

• aids formation of **low level ozone** which affects plant growth and is irritating to eyes, nose and throat

i) sunlight breaks down NO ₂	$NO_2 \longrightarrow NO + O$
ii) ozone is produced	$0 + 0_2 \longrightarrow 0_3$

Hydrocarbons C_xH_y

Origin	• hydrocarbons that have not undergone combustion
Effect	 toxic and carcinogenic (cause cancer)

EQUATIONS FOR POLLUTION FORMATION

Nitrogen combines with oxygen	$N_2(g) + O_2(g) \longrightarrow 2NO(g)$
Nitrogen monoxide is oxidised	$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$
Incomplete hydrocarbon combustion	$C_8H_{18}(g) + 8\frac{1}{2}O_2(g) \longrightarrow 8CO(g) + 9H_2O(I)$

EQUATIONS FOR POLLUTION REMOVAL

Oxidation of carbon monoxide	$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$
Removal of NO and CO	2CO(g) + 2NO(g) —> N ₂ (g) + 2CO ₂ (g)
Aiding complete H/C combustion	$C_8H_{18}(g) + 12\frac{1}{2}O_2(g) \longrightarrow 8CO_2(g) + 9H_2O(I)$

CATALYTIC CONVERTERS

Operation • CO is converted to CO₂

- NO_x are converted to N₂ 2NO(g) + 2CO(g) \longrightarrow N₂(g) + 2CO₂(g)
- Unburnt hydrocarbons $C_8H_{18}(g) + 12\frac{1}{2}O_2(g) \longrightarrow 8CO_2(g) + 9H_2O(I)$ converted to CO_2 and H_2O
- catalysts are rare metals RHODIUM, PALLADIUM
- metals are finely divided for a greater surface area more active sites

Stages	Adsorption	•	NO and CO seek out active sites on the catalyst surface
		•	they bonds with surface weakens the bonds in the gas molecules

- this makes a subsequent reaction easier
- **Reaction** being held on the surface increases chance of favourable collisions
 - bonds break and re-arrange

Desorption • the products N_2 and CO_2 are then released from the active sites

Q.2 Using leaded petrol was not a good idea if a catalytic converter was fitted. Why?

What was done to stop motorists putting leaded petrol in cars with catalytic converters?

5